Skip to main content

Advertisement

Log in

Aberrant miR-215 expression is associated with clinical outcome in breast cancer patients

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Dysregulation of microRNA plays critical roles in various malignancies. However, whether the aberrant expression of miR-215 in breast cancer is associated with malignancy, metastasis, or prognosis remains unknown. In this study, we demonstrated that the relative level of miR-215 expression was lower in cancer tissues compared with adjacent non-malignant tissues (p < 0.001). Low-miR-215 expression was observed to be closely correlated with higher tumor grade (p = 0.008), human epidermal growth factor receptor 2 (HER2) positivity (p = 0.006), HER2 positive breast cancer subtype (p = 0.016), and lymph node metastasis (p = 0.039). Moreover, patients with low-miR-215 expression showed shorter 5-year disease-specific survival (DSS) than the high-miR-215 expression group (p = 0.007). Multivariate analysis results revealed that miR-215 downexpression was an unfavorable prognostic factor for DSS in addition to tumor size, ER, and lymph node metastasis. Our results support the potential of miR-215 as a prognostic predictor for breast cancer with its high expression in cancer tissues and its relationship with other clinicopathologic factors and survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Motamedolshariati M, Memar B, Aliakbaian M, Shakeri MT, Samadi M, Jangjoo A. Accuracy of prognostic and predictive markers in core needle breast biopsies compared with excisional specimens. Breast Care. 2014;9(2):107–10. doi:10.1159/000360787.

    Article  PubMed  Google Scholar 

  2. Zhang BN, Cao XC, Chen JY, Chen J, Fu L, Hu XC, et al. Guidelines on the diagnosis and treatment of breast cancer (2011 edition). Gland Surg. 2012;1(1):39–61. doi:10.3978/j.issn.2227-684X.2012.04.07.

    PubMed  PubMed Central  Google Scholar 

  3. Fan L, Strasser-Weippl K, Li JJ, St Louis J, Finkelstein DM, Yu KD, et al. Breast cancer in China. Lancet Oncol. 2014;15(7):e279–89. doi:10.1016/S1470-2045(13)70567-9.

    Article  PubMed  Google Scholar 

  4. Rutnam ZJ, Yang BB. The involvement of microRNAs in malignant transformation. Histol Histopathol. 2012;27(10):1263–70.

    PubMed  CAS  Google Scholar 

  5. Kong YW, Ferland-McCollough D, Jackson TJ, Bushell M. microRNAs in cancer management. Lancet Oncol. 2012;13(6):e249–58. doi:10.1016/S1470-2045(12)70073-6.

    Article  PubMed  CAS  Google Scholar 

  6. Di Leva G, Garofalo M, Croce CM. MicroRNAs in cancer. Annu Rev Pathol. 2014;9:287–314. doi:10.1146/annurev-pathol-012513-104715.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Mulrane L, McGee SF, Gallagher WM, O’Connor DP. miRNA dysregulation in breast cancer. Cancer Res. 2013;73(22):6554–62. doi:10.1158/0008-5472.CAN-13-1841.

    Article  PubMed  CAS  Google Scholar 

  8. Liu H. MicroRNAs in breast cancer initiation and progression. Cell Mol Life Sci: CMLS. 2012;69(21):3587–99. doi:10.1007/s00018-012-1128-9.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  9. Pena-Chilet M, Martinez MT, Perez-Fidalgo JA, Peiro-Chova L, Oltra SS, Tormo E, et al. MicroRNA profile in very young women with breast cancer. BMC Cancer. 2014;14(1):529. doi:10.1186/1471-2407-14-529.

    Article  PubMed  Google Scholar 

  10. Bischoff A, Huck B, Keller B, Strotbek M, Schmid S, Boerries M, et al. miR-149 functions as a tumor suppressor by controlling breast epithelial cell migration and invasion. Cancer Res. 2014;. doi:10.1158/0008-5472.CAN-13-3319.

    PubMed  Google Scholar 

  11. Schrauder MG, Strick R, Schulz-Wendtland R, Strissel PL, Kahmann L, Loehberg CR, et al. Circulating micro-RNAs as potential blood-based markers for early stage breast cancer detection. PLoS One. 2012;7(1):e29770. doi:10.1371/journal.pone.0029770.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  12. Fu SW, Chen L, Man YG. miRNA biomarkers in breast cancer detection and management. J Cancer. 2011;2:116–22.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Perez-Rivas LG, Jerez JM, Carmona R, de Luque V, Vicioso L, Claros MG, et al. A microRNA signature associated with early recurrence in breast cancer. PLoS One. 2014;9(3):e91884. doi:10.1371/journal.pone.0091884.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Smeets A, Daemen A, Vanden Bempt I, Gevaert O, Claes B, Wildiers H, et al. Prediction of lymph node involvement in breast cancer from primary tumor tissue using gene expression profiling and miRNAs. Breast Cancer Res Treat. 2011;129(3):767–76. doi:10.1007/s10549-010-1265-5.

    Article  PubMed  CAS  Google Scholar 

  15. Tanic M, Yanowski K, Gomez-Lopez G, Socorro Rodriguez-Pinilla M, Marquez-Rodas I, Osorio A, et al. microRNA expression signatures for the prediction of BRCA1/2 mutation-associated hereditary breast cancer in paraffin-embedded formalin-fixed breast tumors. Int J Cancer. 2014;. doi:10.1002/ijc.29021.

    PubMed  Google Scholar 

  16. Georges SA, Biery MC, Kim SY, Schelter JM, Guo J, Chang AN, et al. Coordinated regulation of cell cycle transcripts by p53-Inducible microRNAs, miR-192 and miR-215. Cancer Res. 2008;68(24):10105–12. doi:10.1158/0008-5472.CAN-08-1846.

    Article  PubMed  CAS  Google Scholar 

  17. Pichiorri F, Suh SS, Rocci A, De Luca L, Taccioli C, Santhanam R, et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell. 2010;18(4):367–81. doi:10.1016/j.ccr.2010.09.005.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Faltejskova P, Svoboda M, Srutova K, Mlcochova J, Besse A, Nekvindova J, et al. Identification and functional screening of microRNAs highly deregulated in colorectal cancer. J Cell Mol Med. 2012;16(11):2655–66. doi:10.1111/j.1582-4934.2012.01579.x.

    Article  PubMed  CAS  Google Scholar 

  19. Karaayvaz M, Pal T, Song B, Zhang C, Georgakopoulos P, Mehmood S, et al. Prognostic significance of miR-215 in colon cancer. Clin Colorectal Cancer. 2011;10(4):340–7. doi:10.1016/j.clcc.2011.06.002.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. van Schooneveld E, Wouters MC, Van der Auwera I, Peeters DJ, Wildiers H, Van Dam PA, et al. Expression profiling of cancerous and normal breast tissues identifies microRNAs that are differentially expressed in serum from patients with (metastatic) breast cancer and healthy volunteers. Breast Cancer Res: BCR. 2012;14(1):R34. doi:10.1186/bcr3127.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Lujambio A, Lowe SW. The microcosmos of cancer. Nature. 2012;482(7385):347–55. doi:10.1038/nature10888.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Dvinge H, Git A, Graf S, Salmon-Divon M, Curtis C, Sottoriva A, et al. The shaping and functional consequences of the microRNA landscape in breast cancer. Nature. 2013;497(7449):378–82. doi:10.1038/nature12108.

    Article  PubMed  CAS  Google Scholar 

  23. Wijnhoven BP, Hussey DJ, Watson DI, Tsykin A, Smith CM, Michael MZ, et al. MicroRNA profiling of Barrett’s oesophagus and oesophageal adenocarcinoma. Br J Surg. 2010;97(6):853–61. doi:10.1002/bjs.7000.

    Article  PubMed  CAS  Google Scholar 

  24. White NM, Khella HW, Grigull J, Adzovic S, Youssef YM, Honey RJ, et al. miRNA profiling in metastatic renal cell carcinoma reveals a tumour-suppressor effect for miR-215. Br J Cancer. 2011;105(11):1741–9. doi:10.1038/bjc.2011.401.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Necela BM, Carr JM, Asmann YW, Thompson EA. Differential expression of microRNAs in tumors from chronically inflamed or genetic (APC(Min/+)) models of colon cancer. PLoS One. 2011;6(4):e18501. doi:10.1371/journal.pone.0018501.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A. 2006;103(24):9136–41. doi:10.1073/pnas.0508889103.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Deng Y, Huang Z, Xu Y, Jin J, Zhuo W, Zhang C, et al. MiR-215 modulates gastric cancer cell proliferation by targeting RB1. Cancer Lett. 2014;342(1):27–35. doi:10.1016/j.canlet.2013.08.033.

    Article  PubMed  CAS  Google Scholar 

  28. Liu F, You X, Chi X, Wang T, Ye L, Niu J, et al. Hepatitis B virus X protein mutant HBxDelta127 promotes proliferation of hepatoma cells through up-regulating miR-215 targeting PTPRT. Biochem Biophys Res Commun. 2014;444(2):128–34. doi:10.1016/j.bbrc.2014.01.004.

    Article  PubMed  CAS  Google Scholar 

  29. Zheng L, Ren JQ, Li H, Kong ZL, Zhu HG. Downregulation of wild-type p53 protein by HER-2/neu mediated PI3 K pathway activation in human breast cancer cells: its effect on cell proliferation and implication for therapy. Cell Res. 2004;14(6):497–506. doi:10.1038/sj.cr.7290253.

    Article  PubMed  CAS  Google Scholar 

Download references

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-wei Zhou.

Additional information

The authors Shu-wei Zhou and Bei-bei Su contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Sw., Su, Bb., Zhou, Y. et al. Aberrant miR-215 expression is associated with clinical outcome in breast cancer patients. Med Oncol 31, 259 (2014). https://doi.org/10.1007/s12032-014-0259-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12032-014-0259-2

Keywords

Navigation