Skip to main content

Advertisement

Log in

Ovarian cancer stem cells: elusive targets for chemotherapy

  • Review Article
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

Ovarian cancer is one of the major causes of death in women with gynecologic malignancy. Most patients respond favorably to platinum therapy, but relapses are common. There is emerging evidence that a special subset of cells that is highly tumorigenic is responsible for recurrence of the disease. This subset of cells has been characterized by several groups and has been found to have the properties of cancer stem cells. They have been isolated from tumor samples obtained during surgical cytoreduction and also from the ascitic fluid of ovarian cancer patients. Currently, there are no known unique markers to define these cells, but several groups have used different approaches to purify them. Although some heterogeneity has been observed in these cells, most of them satisfy the functional definition of a stem cell. Advances in characterization of ovarian cancer stem cells are instrumental in developing therapies that specifically target them. This review describes the advances made in characterization of these cells, basis of their resistance to conventional chemotherapeutic agents and the prognostic implications of utilizing mechanisms specific to ovarian cancer stem cell for therapeutic interventions. Eliminating ovarian cancer stem cells could possibly lead to a prolongation of the disease-free survival period and hopefully a definitive cure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin. 2010;60(5):277–300. doi:10.3322/caac.20073.

    Article  PubMed  Google Scholar 

  2. Wikborn C, Pettersson F, Moberg PJ. Delay in diagnosis of epithelial ovarian cancer. Int J Gynaecol Obstet. 1996;52(3):263–7.

    Article  PubMed  CAS  Google Scholar 

  3. Martin LP, Schilder RJ. Management of recurrent ovarian carcinoma: current status and future directions. Semin Oncol. 2009;36(2):112–25. doi:10.1053/j.seminoncol.2008.12.003.

    Article  PubMed  Google Scholar 

  4. Griffiths C. Surgical resection of tumor bulk in the primary treatment of ovarian carcinoma. Nat Cancer Inst Monogr. 1975;42:101–4.

    PubMed  CAS  Google Scholar 

  5. Bristow RE, Puri I, Chi DS. Cytoreductive surgery for recurrent ovarian cancer: a meta-analysis. Gynecol Oncol. 2009;112(1):265–74. doi:10.1016/j.ygyno.2008.08.033.

    Article  PubMed  Google Scholar 

  6. Chen VW, Ruiz B, Killeen JL, Cote TR, Wu XC, Correa CN. Pathology and classification of ovarian tumors. Cancer. 2003;97(10 Suppl):2631–42. doi:10.1002/cncr.11345.

    Article  PubMed  Google Scholar 

  7. Tavassoli FA, Devilee P, International Agency for Research on Cancer., World Health Organization (2003) Pathology and genetics of tumours of the breast and female genital organs. World Health Organization classification of tumours. IAPS Press, Lyon.

  8. Karst AM, Drapkin R. Ovarian cancer pathogenesis: a model in evolution. J Oncol. 2010;2010:932371. doi:10.1155/2010/932371.

    Article  PubMed  CAS  Google Scholar 

  9. Dubeau L. The cell of origin of ovarian epithelial tumours. Lancet Oncol. 2008;9:1191–7.

    Article  PubMed  CAS  Google Scholar 

  10. Ness RB, Cottreau C. Possible role of ovarian epithelial inflammation in ovarian cancer. J Natl Cancer Inst. 1999;91(17):1459–67.

    Article  PubMed  CAS  Google Scholar 

  11. Ahmed N, Maines-Bandiera S, Quinn MA, Unger WG, Dedhar S, Auersperg N. Molecular pathways regulating EGF-induced epithelio-mesenchymal transition in human ovarian surface epithelium. Am J Physiol Cell Physiol. 2006;290(6):C1532–42. doi:10.1152/ajpcell.00478.2005.

    Article  PubMed  CAS  Google Scholar 

  12. Leeper K, Garcia R, Swisher E, Goff B, Greer B, Paley P. Pathologic findings in prophylactic oophorectomy specimens in high-risk women. Gynecol Oncol. 2002;87(1):52–6.

    Article  PubMed  Google Scholar 

  13. Carcangiu ML, Radice P, Manoukian S, Spatti G, Gobbo M, Pensotti V, Crucianelli R, Pasini B. Atypical epithelial proliferation in fallopian tubes in prophylactic salpingo-oophorectomy specimens from BRCA1 and BRCA2 germline mutation carriers. Int J Gynecol Pathol. 2004;23(1):35–40. doi:10.1097/01.pgp.0000101082.35393.84.

    Article  PubMed  Google Scholar 

  14. Kindelberger DWLY, Miron A, Hirsch MS, Feltmate C, Medeiros F, Callahan MJ, Garner EO, Gordon RW, Birch C, Berkowitz RS, Muto MG, Crum CP. Intraepithelial carcinoma of the fimbria and pelvic serous carcinoma: Evidence for a causal relationship. Am J Surg Pathol. 2007;31(2):161–9.

    Article  PubMed  Google Scholar 

  15. Folkins AK, Jarboe EA, Saleemuddin A, Lee Y, Callahan MJ, Drapkin R, Garber JE, Muto MG, Tworoger S, Crum CP. A candidate precursor to pelvic serous cancer (p53 signature) and its prevalence in ovaries and fallopian tubes from women with BRCA mutations. Gynecol Oncol. 2008;109(2):168–73. doi:10.1016/j.ygyno.2008.01.012.

    Article  PubMed  CAS  Google Scholar 

  16. Jazedje T, Perin PM, Czeresnia CE, Maluf M, Halpern S, Secco M, Bueno DF, Vieira NM, Zucconi E, Zatz M. Human fallopian tube: a new source of multipotent adult mesenchymal stem cells discarded in surgical procedures. J Transl Med. 2009;7:46. doi:10.1186/1479-5876-7-46.

    Article  PubMed  Google Scholar 

  17. Finch ABM, Lubinski J, Lynch HT, Moller P, Rosen B, Murphy J, Ghadirian P, Friedman E, Foulkes WD, Kim-Sing C, Wagner T, Tung N, Couch F, Stoppa-Lyonnet D, Ainsworth P, Daly M, Pasini B, Gershoni-Baruch R, Eng C, Olopade OI, McLennan J, Karlan B, Weitzel J, Sun P, Narod SA, Hereditary Ovarian Cancer Clinical Study Group. Salpingo-oophorectomy and the risk of ovarian, fallopian tube, and peritoneal cancers in women with a BRCA1 or BRCA2 Mutation. J Am Med Assoc. 2006;296(2):185–92.

    Article  CAS  Google Scholar 

  18. Wolff EF, Wolff AB, Hongling D, Taylor HS. Demonstration of multipotent stem cells in the adult human endometrium by in vitro chondrogenesis. Reprod Sci. 2007;14(6):524–33. doi:10.1177/1933719107306896.

    Article  PubMed  CAS  Google Scholar 

  19. Schwab KE, Hutchinson P, Gargett CE. Identification of surface markers for prospective isolation of human endometrial stromal colony-forming cells. Hum Reprod. 2008;23(4):934–43. doi:10.1093/humrep/den051.

    Article  PubMed  CAS  Google Scholar 

  20. King SM, Burdette JE. Evaluating the progenitor cells of ovarian cancer: analysis of current animal models. BMB Rep. 2011;44(7):435–45. doi:10.5483/BMBRep.2011,44(7),pp.435.

    Article  PubMed  CAS  Google Scholar 

  21. Shih Ie M, Kurman RJ. Ovarian tumorigenesis: a proposed model based on morphological and molecular genetic analysis. Am J Pathol. 2004;164(5):1511–8.

    Article  PubMed  Google Scholar 

  22. Singer G, Stohr R, Cope L, Dehari R, Hartmann A, Cao DF, Wang TL, Kurman RJ, Shih IM. Patterns of p53 mutations separate ovarian serous borderline tumors and low- and high-grade carcinomas and provide support for a new model of ovarian carcinogenesis: a mutational analysis with immunohistochemical correlation. Am J Surg Pathol. 2005;29(2):218–24.

    Article  PubMed  Google Scholar 

  23. Singer G, Oldt R 3rd, Cohen Y, Wang BG, Sidransky D, Kurman RJ, Shih IM. Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst. 2003;95(6):484–6.

    Article  PubMed  CAS  Google Scholar 

  24. Ahmed AA, Etemadmoghadam D, Temple J, Lynch AG, Riad M, Sharma R, Stewart C, Fereday S, Caldas C, Defazio A, Bowtell D, Brenton JD. Driver mutations in TP53 are ubiquitous in high grade serous carcinoma of the ovary. J Pathol. 2010;221(1):49–56. doi:10.1002/path.2696.

    Article  PubMed  CAS  Google Scholar 

  25. Samimi G, Fink D, Varki NM, Husain A, Hoskins WJ, Alberts DS, Howell SB. Analysis of MLH1 and MSH2 expression in ovarian cancer before and after platinum drug-based chemotherapy. Clin Cancer Res. 2000;6(4):1415–21.

    PubMed  CAS  Google Scholar 

  26. Tothill RW, Tinker AV, George J, Brown R, Fox SB, Lade S, Johnson DS, Trivett MK, Etemadmoghadam D, Locandro B, Traficante N, Fereday S, Hung JA, Chiew YE, Haviv I, Gertig D, DeFazio A, Bowtell DD. Novel molecular subtypes of serous and endometrioid ovarian cancer linked to clinical outcome. Clin Cancer Res. 2008;14(16):5198–208. doi:10.1158/1078-0432.CCR-08-0196.

    Article  PubMed  CAS  Google Scholar 

  27. Bonome T, Lee JY, Park DC, Radonovich M, Pise-Masison C, Brady J, Gardner GJ, Hao K, Wong WH, Barrett JC, Lu KH, Sood AK, Gershenson DM, Mok SC, Birrer MJ. Expression profiling of serous low malignant potential, low-grade, and high-grade tumors of the ovary. Cancer Res. 2005;65(22):10602–12. doi:10.1158/0008-5472.CAN-05-2240.

    Article  PubMed  CAS  Google Scholar 

  28. White YA, Woods DC, Takai Y, Ishihara O, Seki H, Tilly JL. Oocyte formation by mitotically active germ cells purified from ovaries of reproductive-age women. Nat Med. 2012;18(3):413–21. doi:10.1038/nm.2669.

    Article  PubMed  CAS  Google Scholar 

  29. Szotek PP, Chang HL, Brennand K, Fujino A, Pieretti-Vanmarcke R, Lo Celso C, Dombkowski D, Preffer F, Cohen KS, Teixeira J, Donahoe PK. Normal ovarian surface epithelial label-retaining cells exhibit stem/progenitor cell characteristics. Proc Natl Acad Sci USA. 2008;105(34):12469–73. doi:10.1073/pnas.0805012105.

    Article  PubMed  CAS  Google Scholar 

  30. Virant-Klun I, Rozman P, Cvjeticanin B, Vrtacnik-Bokal E, Novakovic S, Rulicke T, Dovc P, Meden-Vrtovec H. Parthenogenetic embryo-like structures in the human ovarian surface epithelium cell culture in postmenopausal women with no naturally present follicles and oocytes. Stem Cells Dev. 2009;18(1):137–49. doi:10.1089/scd.2007.0238.

    Article  PubMed  CAS  Google Scholar 

  31. Gou S, Liu T, Wang C, Yin T, Li K, Yang M, Zhou J. Establishment of clonal colony-forming assay for propagation of pancreatic cancer cells with stem cell properties. Pancreas. 2007;34(4):429–35. doi:10.1097/MPA.0b013e318033f9f4.

    Article  PubMed  Google Scholar 

  32. Dick JE, Bhatia M, Gan O, Kapp U, Wang JC (1997) Assay of human stem cells by repopulation of NOD/SCID mice. Stem Cells 15(Suppl 1):199–203; discussion 204–197. doi:10.1002/stem.5530150826.

    Google Scholar 

  33. Lin KK, Goodell MA. Purification of hematopoietic stem cells using the side population. Methods Enzymol. 2006;420:255–64. doi:10.1016/S0076-6879(06)20011-9.

    Article  PubMed  CAS  Google Scholar 

  34. Alvi AJ, Clayton H, Joshi C, Enver T, Ashworth A, Vivanco MM, Dale TC, Smalley MJ. Functional and molecular characterisation of mammary side population cells. Breast Cancer Res. 2003;5(1):R1–8.

    Article  PubMed  Google Scholar 

  35. Al-Hajj M, Wicha MS, Benito-Hernandez A, Morrison SJ, Clarke MF (2003) Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 100(7):3983–3988.

    Google Scholar 

  36. Szotek PP, Pieretti-Vanmarcke R, Masiakos PT, Dinulescu DM, Connolly D, Foster R, Dombkowski D, Preffer F, Maclaughlin DT, Donahoe PK. Ovarian cancer side population defines cells with stem cell-like characteristics and Mullerian Inhibiting Substance responsiveness. Proc Natl Acad Sci USA. 2006;103(30):11154–9. doi:10.1073/pnas.0603672103.

    Article  PubMed  CAS  Google Scholar 

  37. Moshaver B, van Rhenen A, Kelder A, van der Pol M, Terwijn M, Bachas C, Westra AH, Ossenkoppele GJ, Zweegman S, Schuurhuis GJ. Identification of a small subpopulation of candidate leukemia-initiating cells in the side population of patients with acute myeloid leukemia. Stem Cells. 2008;26(12):3059–67. doi:10.1634/stemcells.2007-0861.

    Article  PubMed  Google Scholar 

  38. Zhang HB, Ren CP, Yang XY, Wang L, Li H, Zhao M, Yang H, Yao KT. Identification of label-retaining cells in nasopharyngeal epithelia and nasopharyngeal carcinoma tissues. Histochem Cell Biol. 2007;127(3):347–54. doi:10.1007/s00418-006-0251-9.

    Article  PubMed  CAS  Google Scholar 

  39. Kuwahara R, Kofman AV, Landis CS, Swenson ES, Barendswaard E, Theise ND. The hepatic stem cell niche: identification by label-retaining cell assay. Hepatology. 2008;47(6):1994–2002. doi:10.1002/hep.22218.

    Article  PubMed  Google Scholar 

  40. Brown MD, Gilmore PE, Hart CA, Samuel JD, Ramani VA, George NJ, Clarke NW. Characterization of benign and malignant prostate epithelial Hoechst 33342 side populations. Prostate. 2007;67(13):1384–96. doi:10.1002/pros.20620.

    Article  PubMed  Google Scholar 

  41. Addla SK, Brown MD, Hart CA, Ramani VA, Clarke NW. Characterization of the Hoechst 33342 side population from normal and malignant human renal epithelial cells. Am J Physiol Renal Physiol. 2008;295(3):F680–7. doi:10.1152/ajprenal.90286.2008.

    Article  PubMed  CAS  Google Scholar 

  42. Hu L, McArthur C, Jaffe RB. Ovarian cancer stem-like side-population cells are tumourigenic and chemoresistant. Br J Cancer. 2010;102(8):1276–83. doi:10.1038/sj.bjc.6605626.

    Article  PubMed  CAS  Google Scholar 

  43. Fillmore CM, Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 2008;10(2):R25. doi:10.1186/bcr1982.

    Article  PubMed  CAS  Google Scholar 

  44. Boutonnat J, Faussat AM, Marie JP, Bignon J, Wdzieczak-Bakala J, Barbier M, Thierry J, Ronot X, Colle PE. Usefulness of PKH fluorescent labelling to study leukemic cell proliferation with various cytostatic drugs or acetyl tetrapeptide–AcSDKP. BMC Cancer. 2005;5:120. doi:10.1186/1471-2407-5-120.

    Article  PubMed  CAS  Google Scholar 

  45. Kusumbe AP, Bapat SA. Cancer stem cells and aneuploid populations within developing tumors are the major determinants of tumor dormancy. Cancer Res. 2009;69(24):9245–53. doi:10.1158/0008-5472.CAN-09-2802.

    Article  PubMed  CAS  Google Scholar 

  46. Tang L, Bergevoet SM, Gilissen C, de Witte T, Jansen JH, van der Reijden BA, Raymakers RA. Hematopoietic stem cells exhibit a specific ABC transporter gene expression profile clearly distinct from other stem cells. BMC Pharmacol. 2010;10:12. doi:10.1186/1471-2210-10-12.

    Article  PubMed  CAS  Google Scholar 

  47. Guo Y, Kock K, Ritter CA, Chen ZS, Grube M, Jedlitschky G, Illmer T, Ayres M, Beck JF, Siegmund W, Ehninger G, Gandhi V, Kroemer HK, Kruh GD, Schaich M. Expression of ABCC-type nucleotide exporters in blasts of adult acute myeloid leukemia: relation to long-term survival. Clin Cancer Res. 2009;15(5):1762–9. doi:10.1158/1078-0432.CCR-08-0442.

    Article  PubMed  CAS  Google Scholar 

  48. Martin V, Xu J, Pabbisetty SK, Alonso MM, Liu D, Lee OH, Gumin J, Bhat KP, Colman H, Lang FF, Fueyo J, Gomez-Manzano C. Tie2-mediated multidrug resistance in malignant gliomas is associated with upregulation of ABC transporters. Oncogene. 2009;28(24):2358–63. doi:10.1038/onc.2009.103.

    Article  PubMed  CAS  Google Scholar 

  49. Donnenberg VS, Meyer EM, Donnenberg AD. Measurement of multiple drug resistance transporter activity in putative cancer stem/progenitor cells. Methods Mol Biol. 2009;568:261–79. doi:10.1007/978-1-59745-280-9_17.

    Article  PubMed  CAS  Google Scholar 

  50. Surowiak P, Materna V, Kaplenko I, Spaczynski M, Dolinska-Krajewska B, Gebarowska E, Dietel M, Zabel M, Lage H. ABCC2 (MRP2, cMOAT) can be localized in the nuclear membrane of ovarian carcinomas and correlates with resistance to cisplatin and clinical outcome. Clin Cancer Res. 2006;12(23):7149–58. doi:10.1158/1078-0432.CCR-06-0564.

    Article  PubMed  CAS  Google Scholar 

  51. Materna V, Stege A, Surowiak P, Priebsch A, Lage H. RNA interference-triggered reversal of ABCC2-dependent cisplatin resistance in human cancer cells. Biochem Biophys Res Commun. 2006;348(1):153–7. doi:10.1016/j.bbrc.2006.07.022.

    Article  PubMed  CAS  Google Scholar 

  52. Baekelandt MM, Holm R, Nesland JM, Trope CG, Kristensen GB. P-glycoprotein expression is a marker for chemotherapy resistance and prognosis in advanced ovarian cancer. Anticancer Res. 2000;20(2):1061–7.

    PubMed  CAS  Google Scholar 

  53. Lu L, Katsaros D, Wiley A, Rigault de la Longrais IA, Puopolo M, Yu H. Expression of MDR1 in epithelial ovarian cancer and its association with disease progression. Oncol Res. 2007;16(8):395–403.

    PubMed  Google Scholar 

  54. Rizzo S, Hersey JM, Mellor P, Dai W, Santos-Silva A, Liber D, Luk L, Titley I, Carden CP, Box G, Hudson DL, Kaye SB, Brown R. Ovarian cancer stem cell-like side populations are enriched following chemotherapy and overexpress EZH2. Mol Cancer Ther. 2011;10(2):325–35. doi:10.1158/1535-7163.MCT-10-0788.

    Article  PubMed  CAS  Google Scholar 

  55. Gao Q, Geng L, Kvalheim G, Gaudernack G, Suo Z. Identification of cancer stem-like side population cells in ovarian cancer cell line OVCAR-3. Ultrastruct Pathol. 2009;33(4):175–81. doi:10.1080/01913120903086072.

    PubMed  Google Scholar 

  56. Wang L, Mezencev R, Bowen NJ, Matyunina LV, McDonald JF. Isolation and characterization of stem-like cells from a human ovarian cancer cell line. Mol Cell Biochem. 2012;363(1–2):257–68. doi:10.1007/s11010-011-1178-6.

    Article  PubMed  CAS  Google Scholar 

  57. Johnatty SE, Beesley J, Paul J, Fereday S, Spurdle AB, Webb PM, Byth K, Marsh S, McLeod H, Harnett PR, Brown R, DeFazio A, Chenevix-Trench G. ABCB1 (MDR 1) polymorphisms and progression-free survival among women with ovarian cancer following paclitaxel/carboplatin chemotherapy. Clin Cancer Res. 2008;14(17):5594–601. doi:10.1158/1078-0432.CCR-08-0606.

    Article  PubMed  CAS  Google Scholar 

  58. Zheng LS, Wang F, Li YH, Zhang X, Chen LM, Liang YJ, Dai CL, Yan YY, Tao LY, Mi YJ, Yang AK, To KK, Fu LW. Vandetanib (Zactima, ZD6474) antagonizes ABCC1- and ABCG2-mediated multidrug resistance by inhibition of their transport function. PLoS ONE. 2009;4(4):e5172. doi:10.1371/journal.pone.0005172.

    Article  PubMed  CAS  Google Scholar 

  59. Calcagno AM, Fostel JM, To KK, Salcido CD, Martin SE, Chewning KJ, Wu CP, Varticovski L, Bates SE, Caplen NJ, Ambudkar SV. Single-step doxorubicin-selected cancer cells overexpress the ABCG2 drug transporter through epigenetic changes. Br J Cancer. 2008;98(9):1515–24. doi:10.1038/sj.bjc.6604334.

    Article  PubMed  CAS  Google Scholar 

  60. Ma L, Lai D, Liu T, Cheng W, Guo L. Cancer stem-like cells can be isolated with drug selection in human ovarian cancer cell line SKOV3. Acta Biochim Biophys Sin (Shanghai). 2010;42(9):593–602. doi:10.1093/abbs/gmq067.

    Article  CAS  Google Scholar 

  61. Corbeil D, Roper K, Hellwig A, Tavian M, Miraglia S, Watt SM, Simmons PJ, Peault B, Buck DW, Huttner WB. The human AC133 hematopoietic stem cell antigen is also expressed in epithelial cells and targeted to plasma membrane protrusions. J Biol Chem. 2000;275(8):5512–20.

    Article  PubMed  CAS  Google Scholar 

  62. Vathipadiekal V, Saxena D, Mok SC, Hauschka PV, Ozbun L, Birrer MJ. Identification of a potential ovarian cancer stem cell gene expression profile from advanced stage papillary serous ovarian cancer. PLoS ONE. 2012;7(1):e29079. doi:10.1371/journal.pone.0029079.

    Article  PubMed  CAS  Google Scholar 

  63. Hosonuma S, Kobayashi Y, Kojo S, Wada H, Seino K, Kiguchi K, Ishizuka B. Clinical significance of side population in ovarian cancer cells. Hum Cell. 2011;24(1):9–12. doi:10.1007/s13577-010-0002-z.

    Article  PubMed  Google Scholar 

  64. Yue Z, Jiang TX, Widelitz RB, Chuong CM. Mapping stem cell activities in the feather follicle. Nature. 2005;438(7070):1026–9. doi:10.1038/nature04222.

    Article  PubMed  CAS  Google Scholar 

  65. Kusumbe AP, Mali AM, Bapat SA. CD133-expressing stem cells associated with ovarian metastases establish an endothelial hierarchy and contribute to tumor vasculature. Stem Cells. 2009;27(3):498–508. doi:10.1634/stemcells.2008-0868.

    Article  PubMed  CAS  Google Scholar 

  66. Chen SF, Chang YC, Nieh S, Liu CL, Yang CY, Lin YS. Nonadhesive culture system as a model of rapid sphere formation with cancer stem cell properties. PLoS ONE. 2012;7(2):e31864. doi:10.1371/journal.pone.0031864.

    Article  PubMed  CAS  Google Scholar 

  67. Pignata S, Scambia G, Ferrandina G, Savarese A, Sorio R, Breda E, Gebbia V, Musso P, Frigerio L, Del Medico P, Lombardi AV, Febbraro A, Scollo P, Ferro A, Tamberi S, Brandes A, Ravaioli A, Valerio MR, Aitini E, Natale D, Scaltriti L, Greggi S, Pisano C, Lorusso D, Salutari V, Legge F, Di Maio M, Morabito A, Gallo C, Perrone F. Carboplatin plus paclitaxel versus carboplatin plus pegylated liposomal doxorubicin as first-line treatment for patients with ovarian cancer: the MITO-2 randomized phase III trial. J Clin Oncol. 2011;29(27):3628–35. doi:10.1200/JCO.2010.33.8566.

    Article  PubMed  CAS  Google Scholar 

  68. Jaaback K, Johnson N (2006) Intraperitoneal chemotherapy for the initial management of primary epithelial ovarian cancer. Cochrane Database Syst Rev (1):CD005340. doi:10.1002/14651858.CD005340.pub2.

  69. Gadducci A, Conte PF. Intraperitoneal chemotherapy in the management of patients with advanced epithelial ovarian cancer: a critical review of the literature. Int J Gynecol Cancer. 2008;18(5):943–53. doi:10.1111/j.1525-1438.2007.01163.x.

    Article  PubMed  CAS  Google Scholar 

  70. De Placido S, Scambia G, Di Vagno G, Naglieri E, Lombardi AV, Biamonte R, Marinaccio M, Carteni G, Manzione L, Febbraro A, De Matteis A, Gasparini G, Valerio MR, Danese S, Perrone F, Lauria R, De Laurentiis M, Greggi S, Gallo C, Pignata S. Topotecan compared with no therapy after response to surgery and carboplatin/paclitaxel in patients with ovarian cancer: multicenter Italian trials in ovarian cancer (MITO-1) randomized study. J Clin Oncol. 2004;22(13):2635–42. doi:10.1200/JCO.2004.09.088.

    Article  PubMed  CAS  Google Scholar 

  71. Bolis G, Danese S, Tateo S, Rabaiotti E, D’Agostino G, Merisio C, Scarfone G, Polverino G, Parazzini F. Epidoxorubicin versus no treatment as consolidation therapy in advanced ovarian cancer: results from a phase II study. Int J Gynecol Cancer. 2006;16(Suppl 1):74–8. doi:10.1111/j.1525-1438.2006.00313.x.

    Article  PubMed  Google Scholar 

  72. Markman M, Liu PY, Wilczynski S, Monk B, Copeland LJ, Alvarez RD, Jiang C, Alberts D. Phase III randomized trial of 12 versus 3 months of maintenance paclitaxel in patients with advanced ovarian cancer after complete response to platinum and paclitaxel-based chemotherapy: a Southwest oncology group and gynecologic oncology group trial. J Clin Oncol. 2003;21(13):2460–5. doi:10.1200/JCO.2003.07.013.

    Article  PubMed  CAS  Google Scholar 

  73. Pecorelli S, Favalli G, Gadducci A, Katsaros D, Panici PB, Carpi A, Scambia G, Ballardini M, Nanni O, Conte P. Phase III trial of observation versus six courses of paclitaxel in patients with advanced epithelial ovarian cancer in complete response after six courses of paclitaxel/platinum-based chemotherapy: final results of the After-6 protocol 1. J Clin Oncol. 2009;27(28):4642–8. doi:10.1200/JCO.2009.21.9691.

    Article  PubMed  CAS  Google Scholar 

  74. Hall GD, Brown JM, Coleman RE, Stead M, Metcalf KS, Peel KR, Poole C, Crawford M, Hancock B, Selby PJ, Perren TJ. Maintenance treatment with interferon for advanced ovarian cancer: results of the Northern and Yorkshire gynaecology group randomised phase III study. Br J Cancer. 2004;91(4):621–6. doi:10.1038/sj.bjc.6602037.

    Article  PubMed  CAS  Google Scholar 

  75. Berek J, Taylor P, McGuire W, Smith LM, Schultes B, Nicodemus CF. Oregovomab maintenance monoimmunotherapy does not improve outcomes in advanced ovarian cancer. J Clin Oncol. 2009;27(3):418–25. doi:10.1200/JCO.2008.17.8400.

    Article  PubMed  CAS  Google Scholar 

  76. Verheijen RH, Massuger LF, Benigno BB, Epenetos AA, Lopes A, Soper JT, Markowska J, Vyzula R, Jobling T, Stamp G, Spiegel G, Thurston D, Falke T, Lambert J, Seiden MV. Phase III trial of intraperitoneal therapy with yttrium-90-labeled HMFG1 murine monoclonal antibody in patients with epithelial ovarian cancer after a surgically defined complete remission. J Clin Oncol. 2006;24(4):571–8. doi:10.1200/JCO.2005.02.5973.

    Article  PubMed  CAS  Google Scholar 

  77. Perren TJ, Swart AM, Pfisterer J, Ledermann JA, Pujade-Lauraine E, Kristensen G, Carey MS, Beale P, Cervantes A, Kurzeder C, du Bois A, Sehouli J, Kimmig R, Stahle A, Collinson F, Essapen S, Gourley C, Lortholary A, Selle F, Mirza MR, Leminen A, Plante M, Stark D, Qian W, Parmar MK, Oza AM. A phase 3 trial of bevacizumab in ovarian cancer. N Engl J Med. 2011;365(26):2484–96. doi:10.1056/NEJMoa1103799.

    Article  PubMed  CAS  Google Scholar 

  78. Parmar MK, Ledermann JA, Colombo N, du Bois A, Delaloye JF, Kristensen GB, Wheeler S, Swart AM, Qian W, Torri V, Floriani I, Jayson G, Lamont A, Tropé C. Paclitaxel plus platinum-based chemotherapy versus conventional platinum-based chemotherapy in women with relapsed ovarian cancer: the ICON4/AGO-OVAR-2.2 trial. Lancet. 2003;361(9375):2099–106.

    Article  PubMed  CAS  Google Scholar 

  79. Gordon AN, Tonda M, Sun S, Rackoff W. Long-term survival advantage for women treated with pegylated liposomal doxorubicin compared with topotecan in a phase 3 randomized study of recurrent and refractory epithelial ovarian cancer. Gynecol Oncol. 2004;95(1):1–8.

    Article  PubMed  CAS  Google Scholar 

  80. Ten Bokkel Huinink WW, Sufliarsky J, Smit WM, Spanik S, Wagnerova M, Hirte HW, Kaye S, Johri AR, Oza AM. Safety and efficacy of patupilone in patients with advanced ovarian, primary fallopian, or primary peritoneal cancer: a phase I, open-label, dose-escalation study. J Clin Oncol. 2009;27(19):3097–103. doi:10.1200/JCO.2008.20.4826.

    Article  PubMed  CAS  Google Scholar 

  81. Rustin GJ (2011) Follow-up with CA125 after primary therapy of advanced ovarian cancer has major implications for treatment outcome and trial performances and should not be routinely performed. Ann Oncol 22(Suppl 8):viii45–viii48. doi:10.1093/annonc/mdr471.

    Google Scholar 

  82. Steg AD, Bevis KS, Katre AA, Ziebarth A, Dobbin ZC, Alvarez RD, Zhang K, Conner M, Landen CN. Stem cell pathways contribute to clinical chemoresistance in ovarian cancer. Clin Cancer Res. 2012;18(3):869–81. doi:10.1158/1078-0432.CCR-11-2188.

    Article  PubMed  CAS  Google Scholar 

  83. Meirelles K, Benedict LA, Dombkowski D, Pepin D, Preffer FI, Teixeira J, Tanwar PS, Young RH, MacLaughlin DT, Donahoe PK, Wei X. Human ovarian cancer stem/progenitor cells are stimulated by doxorubicin but inhibited by Mullerian inhibiting substance. Proc Natl Acad Sci USA. 2012;109(7):2358–63. doi:10.1073/pnas.1120733109.

    Article  PubMed  CAS  Google Scholar 

  84. Zhang Y, Wang Z, Yu J, Shi JZ, Wang C, Fu WH, Chen ZW, Yang J. Cancer stem-like cells contribute to cisplatin resistance and progression in bladder cancer. Cancer Lett. 2012;. doi:10.1016/j.canlet.2012.02.010.

    Google Scholar 

  85. Falso MJ, Buchholz BA, White RW. Stem-like cells in bladder cancer cell lines with differential sensitivity to cisplatin. Anticancer Res. 2012;32(3):733–8.

    PubMed  CAS  Google Scholar 

  86. Abelson S, Shamai Y, Berger L, Shouval R, Skorecki K, Tzukerman M. Intratumoral heterogeneity in the self-renewal and tumorigenic differentiation of ovarian cancer. Stem Cells. 2012;30(3):415–24. doi:10.1002/stem.1029.

    Article  PubMed  CAS  Google Scholar 

  87. Steffensen KD, Alvero AB, Yang Y, Waldstrom M, Hui P, Holmberg JC, Silasi DA, Jakobsen A, Rutherford T, Mor G. Prevalence of epithelial ovarian cancer stem cells correlates with recurrence in early-stage ovarian cancer. J Oncol. 2011;2011:620523. doi:10.1155/2011/620523.

    Article  PubMed  Google Scholar 

  88. Mani SA, Guo W, Liao MJ, Eaton EN, Ayyanan A, Zhou AY, Brooks M, Reinhard F, Zhang CC, Shipitsin M, Campbell LL, Polyak K, Brisken C, Yang J, Weinberg RA. The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell. 2008;133(4):704–15. doi:10.1016/j.cell.2008.03.027.

    Article  PubMed  CAS  Google Scholar 

  89. Bapat SA, Mali AM, Koppikar CB, Kurrey NK. Stem and progenitor-like cells contribute to the aggressive behavior of human epithelial ovarian cancer. Cancer Res. 2005;65(8):3025–9. doi:10.1158/0008-5472.CAN-04-3931.

    PubMed  CAS  Google Scholar 

  90. Wani AA, Sharma N, Shouche YS, Bapat SA. Nuclear-mitochondrial genomic profiling reveals a pattern of evolution in epithelial ovarian tumor stem cells. Oncogene. 2006;25(47):6336–44. doi:10.1038/sj.onc.1209649.

    Article  PubMed  CAS  Google Scholar 

  91. Ferrandina G, Bonanno G, Pierelli L, Perillo A, Procoli A, Mariotti A, Corallo M, Martinelli E, Rutella S, Paglia A, Zannoni G, Mancuso S, Scambia G. Expression of CD133-1 and CD133-2 in ovarian cancer. Int J Gynecol Cancer. 2008;18(3):506–14. doi:10.1111/j.1525-1438.2007.01056.x.

    Article  PubMed  CAS  Google Scholar 

  92. Curley MD, Therrien VA, Cummings CL, Sergent PA, Koulouris CR, Friel AM, Roberts DJ, Seiden MV, Scadden DT, Rueda BR, Foster R. CD133 expression defines a tumor initiating cell population in primary human ovarian cancer. Stem Cells. 2009;27(12):2875–83. doi:10.1002/stem.236.

    PubMed  CAS  Google Scholar 

  93. Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH, Nephew KP. Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 2008;68(11):4311–20. doi:10.1158/0008-5472.CAN-08-0364.

    Article  PubMed  CAS  Google Scholar 

  94. Luo L, Zeng J, Liang B, Zhao Z, Sun L, Cao D, Yang J, Shen K. Ovarian cancer cells with the CD117 phenotype are highly tumorigenic and are related to chemotherapy outcome. Exp Mol Pathol. 2011;91(2):596–602. doi:10.1016/j.yexmp.2011.06.005.

    Article  PubMed  CAS  Google Scholar 

  95. Zhang J, Guo X, Chang DY, Rosen DG, Mercado-Uribe I, Liu J. CD133 expression associated with poor prognosis in ovarian cancer. Mod Pathol. 2012;25(3):456–64. doi:10.1038/modpathol.2011.170.

    Article  PubMed  CAS  Google Scholar 

  96. Richardson GD, Robson CN, Lang SH, Neal DE, Maitland NJ, Collins AT. CD133, a novel marker for human prostatic epithelial stem cells. J Cell Sci. 2004;117(Pt 16):3539–45. doi:10.1242/jcs.01222.

    Article  PubMed  CAS  Google Scholar 

  97. Immervoll H, Hoem D, Sakariassen PO, Steffensen OJ, Molven A. Expression of the “stem cell marker” CD133 in pancreas and pancreatic ductal adenocarcinomas. BMC Cancer. 2008;8:48. doi:10.1186/1471-2407-8-48.

    Article  PubMed  CAS  Google Scholar 

  98. Singh SKHC, Clarke ID, Squire JA, Bayani J, Hide T, Henkelman RM, Cusimano MD, Dirks PB. Identification of human brain tumour initiating cells. Nature. 2004;432(7015):396–401.

    Article  PubMed  CAS  Google Scholar 

  99. Baba T, Convery PA, Matsumura N, Whitaker RS, Kondoh E, Perry T, Huang Z, Bentley RC, Mori S, Fujii S, Marks JR, Berchuck A, Murphy SK. Epigenetic regulation of CD133 and tumorigenicity of CD133 + ovarian cancer cells. Oncogene. 2009;28(2):209–18. doi:10.1038/onc.2008.374.

    Article  PubMed  CAS  Google Scholar 

  100. Peng S, Maihle NJ, Huang Y. Pluripotency factors Lin28 and Oct4 identify a sub-population of stem cell-like cells in ovarian cancer. Oncogene. 2010;29(14):2153–9. doi:10.1038/onc.2009.500.

    Article  PubMed  CAS  Google Scholar 

  101. Chang B, Liu G, Xue F, Rosen DG, Xiao L, Wang X, Liu J. ALDH1 expression correlates with favorable prognosis in ovarian cancers. Mod Pathol. 2009;22(6):817–23. doi:10.1038/modpathol.2009.35.

    PubMed  CAS  Google Scholar 

  102. Kobayashi YSK, Hosonuma S, Ohara T, Itamochi H, Isonishi S, Kita T, Wada H, Kojo S, Kiguchi K. Side population is increased in paclitaxel-resistant ovarian cancer cell lines regardless of resistance to cisplatin. Gynecol Oncol. 2011;121(2):390–4.

    Article  PubMed  CAS  Google Scholar 

  103. Moserle L, Indraccolo S, Ghisi M, Frasson C, Fortunato E, Canevari S, Miotti S, Tosello V, Zamarchi R, Corradin A, Minuzzo S, Rossi E, Basso G, Amadori A. The side population of ovarian cancer cells is a primary target of IFN-alpha antitumor effects. Cancer Res. 2008;68(14):5658–68. doi:10.1158/0008-5472.CAN-07-6341.

    Article  PubMed  CAS  Google Scholar 

  104. Levina V, Marrangoni AM, DeMarco R, Gorelik E, Lokshin AE. Drug-selected human lung cancer stem cells: cytokine network, tumorigenic and metastatic properties. PLoS ONE. 2008;3(8):e3077. doi:10.1371/journal.pone.0003077.

    Article  PubMed  CAS  Google Scholar 

  105. Oki E, Baba H, Tokunaga E, Nakamura T, Ueda N, Futatsugi M, Mashino K, Yamamoto M, Ikebe M, Kakeji Y, Maehara Y. Akt phosphorylation associates with LOH of PTEN and leads to chemoresistance for gastric cancer. Int J Cancer. 2005;117(3):376–80. doi:10.1002/ijc.21170.

    Article  PubMed  CAS  Google Scholar 

  106. Athanassiadou P, Athanassiades P, Grapsa D, Gonidi M, Athanassiadou AM, Stamati PN, Patsouris E. The prognostic value of PTEN, p53, and beta-catenin in endometrial carcinoma: a prospective immunocytochemical study. Int J Gynecol Cancer. 2007;17(3):697–704. doi:10.1111/j.1525-1438.2007.00845.x.

    Article  PubMed  CAS  Google Scholar 

  107. Mackay HJ, Gallinger S, Tsao MS, McLachlin CM, Tu D, Keiser K, Eisenhauer EA, Oza AM. Prognostic value of microsatellite instability (MSI) and PTEN expression in women with endometrial cancer: results from studies of the NCIC Clinical Trials Group (NCIC CTG). Eur J Cancer. 2010;46(8):1365–73. doi:10.1016/j.ejca.2010.02.031.

    Article  PubMed  CAS  Google Scholar 

  108. Nagata Y, Lan KH, Zhou X, Tan M, Esteva FJ, Sahin AA, Klos KS, Li P, Monia BP, Nguyen NT, Hortobagyi GN, Hung MC, Yu D. PTEN activation contributes to tumor inhibition by trastuzumab, and loss of PTEN predicts trastuzumab resistance in patients. Cancer Cell. 2004;6(2):117–27. doi:10.1016/j.ccr.2004.06.022.

    Article  PubMed  CAS  Google Scholar 

  109. Asselin E, Mills GB, Tsang BK. XIAP regulates Akt activity and caspase-3-dependent cleavage during cisplatin-induced apoptosis in human ovarian epithelial cancer cells. Cancer Res. 2001;61(5):1862–8.

    PubMed  CAS  Google Scholar 

  110. Fraser M, Leung BM, Yan X, Dan HC, Cheng JQ, Tsang BK. p53 is a determinant of X-linked inhibitor of apoptosis protein/Akt-mediated chemoresistance in human ovarian cancer cells. Cancer Res. 2003;63(21):7081–8.

    PubMed  CAS  Google Scholar 

  111. Yang X, Fraser M, Moll UM, Basak A, Tsang BK. Akt-mediated cisplatin resistance in ovarian cancer: modulation of p53 action on caspase-dependent mitochondrial death pathway. Cancer Res. 2006;66(6):3126–36. doi:10.1158/0008-5472.CAN-05-0425.

    Article  PubMed  CAS  Google Scholar 

  112. Samimi G, Varki NM, Wilczynski S, Safaei R, Alberts DS, Howell SB. Increase in expression of the copper transporter ATP7A during platinum drug-based treatment is associated with poor survival in ovarian cancer patients. Clin Cancer Res. 2003;9(16 Pt 1):5853–9.

    PubMed  CAS  Google Scholar 

  113. Kalayda GV, Wagner CH, Buss I, Reedijk J, Jaehde U. Altered localisation of the copper efflux transporters ATP7A and ATP7B associated with cisplatin resistance in human ovarian carcinoma cells. BMC Cancer. 2008;8:175. doi:10.1186/1471-2407-8-175.

    Article  PubMed  CAS  Google Scholar 

  114. Yang H, Kong W, He L, Zhao JJ, O’Donnell JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV, Cheng JQ. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res. 2008;68(2):425–33. doi:10.1158/0008-5472.CAN-07-2488.

    Article  PubMed  CAS  Google Scholar 

  115. Yang GF, He WP, Cai MY, He LR, Luo JH, Deng HX, Guan XY, Zeng MS, Zeng YX, Xie D. Intensive expression of Bmi-1 is a new independent predictor of poor outcome in patients with ovarian carcinoma. BMC Cancer. 2010;10:133. doi:10.1186/1471-2407-10-133.

    Article  PubMed  CAS  Google Scholar 

  116. Wang E, Bhattacharyya S, Szabolcs A, Rodriguez-Aguayo C, Jennings NB, Lopez-Berestein G, Mukherjee P, Sood AK, Bhattacharya R. Enhancing chemotherapy response with Bmi-1 silencing in ovarian cancer. PLoS ONE. 2011;6(3):e17918. doi:10.1371/journal.pone.0017918.

    Article  PubMed  CAS  Google Scholar 

  117. Slamon DJ, Godolphin W, Jones LA, Holt JA, Wong SG, Keith DE, Levin WJ, Stuart SG, Udove J, Ullrich A, et al. Studies of the HER-2/neu proto-oncogene in human breast and ovarian cancer. Science. 1989;244(4905):707–12.

    Article  PubMed  CAS  Google Scholar 

  118. Rolitsky CD, Theil KS, McGaughy VR, Copeland LJ, Niemann TH. HER-2/neu amplification and overexpression in endometrial carcinoma. Int J Gynecol Pathol. 1999;18(2):138–43.

    Article  PubMed  CAS  Google Scholar 

  119. Alvero AB, Chen R, Fu HH, Montagna M, Schwartz PE, Rutherford T, Silasi DA, Steffensen KD, Waldstrom M, Visintin I, Mor G (2009) Molecular phenotyping of human ovarian cancer stem cells unravels the mechanisms for repair and chemoresistance. Cell cycle Georgetown, Tex 8(1):158–166.

    Google Scholar 

  120. Bellone S, Siegel ER, Cocco E, Cargnelutti M, Silasi DA, Azodi M, Schwartz PE, Rutherford TJ, Pecorelli S, Santin AD. Overexpression of epithelial cell adhesion molecule in primary, metastatic, and recurrent/chemotherapy-resistant epithelial ovarian cancer: implications for epithelial cell adhesion molecule-specific immunotherapy. Int J Gynecol Cancer. 2009;19(5):860–6. doi:10.1111/IGC.0b013e3181a8331f.

    Article  PubMed  Google Scholar 

  121. Richter CE, Cocco E, Bellone S, Silasi DA, Ruttinger D, Azodi M, Schwartz PE, Rutherford TJ, Pecorelli S, Santin AD (2010) High-grade, chemotherapy-resistant ovarian carcinomas overexpress epithelial cell adhesion molecule (EpCAM) and are highly sensitive to immunotherapy with MT201, a fully human monoclonal anti-EpCAM antibody. Am J Obstet Gynecol 203 (6):582.e1–7. doi:10.1016/j.ajog.2010.07.041.

    Google Scholar 

  122. Pressey JG, Haas MC, Pressey CS, Kelly VM, Parker JN, Gillespie GY, Friedman GK. CD133 marks a myogenically primitive subpopulation in rhabdomyosarcoma cell lines that are relatively chemoresistant but sensitive to mutant HSV. Pediatr Blood Cancer. 2012;. doi:10.1002/pbc.24117.

    PubMed  Google Scholar 

  123. Zhang X, Zhang S, Liu Y, Liu J, Ma Y, Zhu Y, Zhang J. Effects of the combination of RAD001 and docetaxel on breast cancer stem cells. Eur J Cancer. 2012;. doi:10.1016/j.ejca.2012.02.053.

    Google Scholar 

Download references

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Achuta Kumar Guddati.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guddati, A.K. Ovarian cancer stem cells: elusive targets for chemotherapy. Med Oncol 29, 3400–3408 (2012). https://doi.org/10.1007/s12032-012-0252-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-012-0252-6

Keywords

Navigation