Skip to main content

Advertisement

Log in

The quantitative analysis by stem-loop real-time PCR revealed the microRNA-34a, microRNA-155 and microRNA-200c overexpression in human colorectal cancer

  • Original Paper
  • Published:
Medical Oncology Aims and scope Submit manuscript

Abstract

The recently identified class of microRNAs (miRNAs) provided a new insight in cancer research. As the member of miRNAs family, miR-34a, miR-155 and miR-200c abnormalities have been found in various types of cancer. However, the relationship between these three miRNAs (miR-34a, miR-155 and miR-200c) and colorectal cancer is unclear. In this study, we applied stem-loop real-time PCR to quantitatively detect miR-34a, miR-155 and miR-200c expression in 109 pair-matched human colorectal cancers and the corresponding normal mucosa. MiR-34a (2.2-fold), miR-155 (2.3-fold) and miR-200c (3.1-fold) were all expressed at higher levels in colorectal cancer (P = 0.001, 0.005 and 0.001, respectively). In rectum, miR-34a and miR-200c were significantly upregulated (P = 0.006 and 0.007), while the miR-155 overexpression was not statistically significant (P = 0.083). In colon, the higher expression of three miRNAs was seen, however, without significant difference (P > 0.05). We also found that the miR-34a expression was higher in rectal cancer having more advanced TNM stage (III + IV, P = 0.03). Then miR-200c expression was positively correlated with and sera CEA level of rectal cancer patients (P = 0.04). In conclusion, our results thus suggest that the overexpression of miR-34a, miR-155 and miR-200c be associated with the development of colorectal cancer, meanwhile miR-34a may be involved in the development and progression of rectal cancer. The more deeply and larger scale research are required to prove the correlation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Novina CD, Sharp PA. The RNAi revolution. Nature. 2004;430:161–4.

    Article  PubMed  CAS  Google Scholar 

  2. Yekta S, Shih I, Bartel DP. MicroRNA-directed cleavage of HOXB8 mRNA. Science. 2004;304:594.

    Article  PubMed  CAS  Google Scholar 

  3. Cheng AM, Byrom MW, Shelton J, Ford LP. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis. Nucleic Acids Res. 2005;33:1290–7.

    Article  PubMed  CAS  Google Scholar 

  4. Chen CZ, Li L, Lodish HF, Bartel DP. MicroRNAs modulate hematopoietic lineage differentiation. Science. 2004;303:83–6.

    Article  PubMed  CAS  Google Scholar 

  5. Bandres E, Agirre X, Bitarte N, Ramirez N, Zarate R, Roman-Gomez J, et al. Epigenetic regulation of microRNA expression in colorectal cancer. Int J Cancer. 2009;125:2737–43.

    Article  PubMed  CAS  Google Scholar 

  6. Dostie J, Mourelatos Z, Yang M, Sharma A, Dreyfuss G. Numerous microRNPs in neuronal cells containing novel microRNAs. RNA. 2003;9:180–6.

    Article  PubMed  CAS  Google Scholar 

  7. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12:735–9.

    Article  PubMed  CAS  Google Scholar 

  8. Tazawa H, Tsuchiya N, Izumiya M, Nakagama H. Tumorsuppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. PNAS. 2007;104:15472–7.

    Article  PubMed  CAS  Google Scholar 

  9. Schetter AJ, Leung SY, Sohn JJ, Zanetti KA, Bowman ED, Yanaihara N, et al. MicroRNA expression profiles associated with prognosis and therapeutic outcome in colon adenocarcinoma. JAMA. 2008;299:425–36.

    Article  PubMed  CAS  Google Scholar 

  10. Faraoni I, Antonetti FR, Cardone J, Bonmassar E. miR-155 gene: a typical multifunctional microRNA. Biochim Biophys Acta. 2009;1792:497–505.

    Article  PubMed  CAS  Google Scholar 

  11. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. PNAS. 2006;103:2257–61.

    Article  PubMed  CAS  Google Scholar 

  12. Hu X, Macdonald DM, Huettner PC, Feng Z, El Naqa IM, Schwarz JK, et al. A miR-200 microRNA cluster as prognostic marker in advanced ovarian cancer. Gynecol Oncol. 2009;11:457–64.

    Article  Google Scholar 

  13. Nakajima G, Hayashi K, Xi Y, Kudo K, Uchida K, Takasaki K, et al. Non-coding MicroRNAs hsa-let-7 g and hsa-miR-181b are associated with chemoresponse to S-1 in colon cancer. Cancer Genomics Proteomics. 2006;3:317–24.

    PubMed  CAS  Google Scholar 

  14. Xi Y, Formentini A, Chien M, Weir DB, Russo JJ, Ju J, et al. Prognostic values of microRNAs in colorectal cancer. Biomark Insights. 2006;2:113–21.

    PubMed  Google Scholar 

  15. Chen C, Ridzon DA, Broomer AJ, Zhou Z, Lee DH, Nguyen JT, et al. Real-time quantification of microRNAs by stem-loop RT-PCR. Nucleic Acids Res. 2005;33:e179.

    Article  PubMed  Google Scholar 

  16. Compton CC, Greene FL. The staging of colorectal cancer: 2004 and beyond. CA Cancer J Clin. 2004;54:295–308.

    Article  PubMed  Google Scholar 

  17. Wang CJ, Zhou ZG, Wang L, Yang L, Zhou B, Gu J, et al. Clinicopathological significance of microRNA-31, -143 and -145 expression in colorectal cancer. Dis Markers. 2009;26:27–34.

    PubMed  Google Scholar 

  18. Pfaffl MW, Horgan GW, Dempfle L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res. 2002;30:e36.

    Article  PubMed  Google Scholar 

  19. Yang N, Coukos G, Zhang L. MicroRNA epigenetic alterations in human cancer: one step forward in diagnosis and treatment. Int J Cancer. 2008;122:963–8.

    Article  PubMed  CAS  Google Scholar 

  20. Yang L, Belaguli N, Berger DH. MicroRNA and colorectal cancer. World J Surg. 2009;33:638–46.

    Article  PubMed  Google Scholar 

  21. Davidson LA, Wang N, Shah MS, Lupton JR, Ivanov I, Chapkin RS. n-3 Polyunsaturated fatty acids modulate carcinogen-directed non-coding microRNA signatures in rat colon. Carcinogenesis. 2009;30:2077–84.

    Article  PubMed  CAS  Google Scholar 

  22. Dutta KK, Zhong Y, Liu YT, Yamada T, Akatsuka S, Hu Q, et al. Association of microRNA-34a overexpression with proliferation is cell type-dependent. Cancer Sci. 2007;98:1845–52.

    Article  PubMed  CAS  Google Scholar 

  23. Raver-Shapira N, Marciano E, Meiri E, Spector Y, Rosenfeld N, Moskovits N, et al. Transcriptional activation of miR-34a contributes to p53-mediated apoptosis. Mol Cell. 2007;26:731–43.

    Article  PubMed  CAS  Google Scholar 

  24. Sun F, Fu H, Liu Q, Tie Y, Zhu J, Xing R, et al. Downregulation of CCND1 and CDK6 by miR-34a induces cell cycle arrest. FEBS Lett. 2008;582:1564–8.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Grant sponsor: National Natural Science Foundation of China (No. 30830100); Ph.D. Programs Foundation of Ministry of Education of China (No. 200806100058).

Conflict of interest

The authors report no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zongguang Zhou.

Additional information

Mojin Wang and Peng Zhang contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, M., Zhang, P., Li, Y. et al. The quantitative analysis by stem-loop real-time PCR revealed the microRNA-34a, microRNA-155 and microRNA-200c overexpression in human colorectal cancer. Med Oncol 29, 3113–3118 (2012). https://doi.org/10.1007/s12032-012-0241-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12032-012-0241-9

Keywords

Navigation