Skip to main content

Advertisement

Log in

Alteration of miRNAs in Small Neuron-Derived Extracellular Vesicles of Alzheimer's Disease Patients and the Effect of Extracellular Vesicles on Microglial Immune Responses

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Alzheimer's disease (AD) is one of the most severe neurodegenerative diseases observed in the elderly population. Although the hallmarks of AD have been identified, the methods for its definitive diagnosis and treatment are still lacking. Extracellular vesicles (EVs) have become a promising source for biomarkers since the identification of their content. EVs are released from multiple cell types and, when released from neurons, they pass from the brain to the blood with their cargo molecules. Hence, neuron-specific EV-resident microRNAs (miRNAs) are promising biomarkers for diagnosis of AD. This study aimed to identify altered miRNA content in small neuron-derived extracellular vesicles (sNDEVs) isolated from AD patients and healthy individuals. Furthermore, we examined the role of sNDEV-resident miRNAs in neuron-glia cellular interaction to understand their role in AD propagation. We identified 10 differentially expressed miRNAs in the sNDEVs of patients via next-generation sequencing and validated the most dysregulated miRNA, let-7e, with qRT-PCR. Let-7e was significantly increased in the sNDEVs of AD patients compared with those of healthy controls in a larger cohort. First, we evaluated the diagnostic utility of let-7e via ROC curve analysis, which revealed an AUC value of 0.9214. We found that IL-6 gene expression was increased in human microglia after treatment with sNDEVs of AD patients with a high amount of let-7e. Our study suggests that sNDEV-resident let-7e is a potential biomarker for AD diagnosis, and that AD patient-derived sNDEVs induce a neuroinflammatory response in microglia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability Statement

The data sets generated during and/or analyzed during the current study are available from the corresponding author upon reasonable request.

Abbreviations

AD :

Alzheimer's disease

:

Amyloid beta

APP :

Amyloid precursor protein

AUC :

Area under the curve

BACE1 :

Beta-secretase 1

cDNA :

Complementary DNA

CNS :

Central nervous system

CSF :

Cerebrospinal fluid

EV :

Extracellular vesicle

GO :

Gene ontology

HC :

Healthy control

IL :

Interleukin

KEGG :

Kyoto Encyclopedia of Genes and Genomes

L1CAM :

Neural cell adhesion protein

miRNA :

MicroRNA

MISEV :

Minimal information for studies of extracellular vesicles

MMSE :

Mini-Mental State Exam

MRI :

Magnetic resonance imaging

mRNA :

Messenger RNA

sNDEV :

Small neuron-derived extracellular vesicle

NGS :

Next-generation sequencing

NTA :

Nanoparticle tracking analysis

PET :

Positron emission tomography

ROC :

Receiver operating characteristic

sEVs :

Small extracellular vesicles

TEM :

Transmission electron microscopy

TLR :

Toll-like receptor

TNF :

Tumor necrosis factor

References

  • Arioz BI et al (2021) Proteome profiling of neuron-derived exosomes in Alzheimer's disease reveals hemoglobin as a potential biomarker. Neurosci Lett 755

  • Ash EL (2007) 27 - Dementia. In: Marshall RS, Mayer SA (eds) On Call Neurology, 3rd edn. W.B. Saunders, pp 401–417

  • Bachiller S et al (2018) Microglia in neurological diseases: A road map to brain-disease dependent-inflammatory response. Front Cell Neurosci 12(488)

  • Bahrini I et al (2015) Neuronal exosomes facilitate synaptic pruning by up-regulating complement factors in microglia. Sci Rep 5:7989–7989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Blennow K, de Leon MJ, Zetterberg H (2006) Alzheimer’s disease. Lancet 368(9533):387–403

    Article  CAS  PubMed  Google Scholar 

  • Calsolaro V, Edison P (2016) Neuroinflammation in Alzheimer’s disease: Current evidence and future directions. Alzheimers Dement 12(6):719–732

    Article  PubMed  Google Scholar 

  • Caruso Bavisotto C et al (2019) Extracellular vesicle-mediated cell-cell communication in the nervous system: Focus on neurological diseases. Int J Mol Sci 20(2):434

    Article  CAS  PubMed Central  Google Scholar 

  • Cha DJ et al (2019) miR-212 and miR-132 are downregulated in neurally derived plasma exosomes of Alzheimer’s patients. Front Neurosci 13:1208–1208

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen JJ et al (2017) Potential roles of exosomal microRNAs as diagnostic biomarkers and therapeutic application in Alzheimer’s disease. Neural Plast 2017:7027380

    PubMed  PubMed Central  Google Scholar 

  • Chen W-X et al (2018) Analysis of miRNA signature differentially expressed in exosomes from adriamycin-resistant and parental human breast cancer cells. Biosci Rep 38(6):BSR20181090

  • Chen JJ et al (2019a) Exosome-encapsulated microRNAs as promising biomarkers for Alzheimer’s disease. Rev Neurosci 31(1):77–87

    Article  PubMed  Google Scholar 

  • Chen W-X et al (2019b) Bioinformatics analysis of dysregulated microRNAs in exosomes from docetaxel-resistant and parental human breast cancer cells. Cancer Manag Res 11:5425–5435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng L et al (2014) Exosomes provide a protective and enriched source of miRNA for biomarker profiling compared to intracellular and cell-free blood. J Extracell Vesicles 3

  • Cheng L et al (2015) Prognostic serum miRNA biomarkers associated with Alzheimer’s disease shows concordance with neuropsychological and neuroimaging assessment. Mol Psychiatry 20(10):1188–1196

    Article  CAS  PubMed  Google Scholar 

  • Dalvi A (2012) Alzheimer’s disease. Dis Mon 58(12):666–677

    Article  PubMed  Google Scholar 

  • Derkow K et al (2018) Distinct expression of the neurotoxic microRNA family let-7 in the cerebrospinal fluid of patients with Alzheimer’s disease. PLoS One 13(7):e0200602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Z et al (2021) Profiling of serum exosome MiRNA reveals the potential of a MiRNA panel as diagnostic biomarker for Alzheimer’s disease. Mol Neurobiol 58(7):3084–3094

    Article  CAS  PubMed  Google Scholar 

  • Ebrahimkhani S et al (2017) Exosomal microRNA signatures in multiple sclerosis reflect disease status. Sci Rep 7(1):14293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fabbri M et al (2012) MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc Natl Acad Sci USA 109(31):E2110–E2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gámez-Valero A et al (2019) Exploratory study on microRNA profiles from plasma-derived extracellular vesicles in Alzheimer’s disease and dementia with Lewy bodies. Transl Neurodegener 8(1):31

    Article  PubMed  PubMed Central  Google Scholar 

  • Gracia T et al (2017) Urinary exosomes contain microRNAs capable of paracrine modulation of tubular transporters in kidney. Sci Rep 7(1):40601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta A, Pulliam L (2014) Exosomes as mediators of neuroinflammation. J Neuroinflammation 11:68–68

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hane FT et al (2017) Recent progress in Alzheimer’s disease research, part 3: Diagnosis and treatment. J Alzheimers Dis 57(3):645–665

    Article  PubMed  PubMed Central  Google Scholar 

  • Heneka MT et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14(4):388–405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jella KK et al (2018) Exosomes, their biogenesis and role in inter-cellular communication, tumor microenvironment and cancer immunotherapy. Vaccines (Basel) 6(4)

  • Kinoshita C et al (2014) Rhythmic oscillations of the microRNA miR-96-5p play a neuroprotective role by indirectly regulating glutathione levels. Nat Commun 5(1):3823

    Article  CAS  PubMed  Google Scholar 

  • Leggio L et al (2017) microRNAs in Parkinson's disease: From pathogenesis to novel diagnostic and therapeutic approaches. Int J Mol Sci 18(12)

  • Liao W et al (2019) Exosomes: The next generation of endogenous nanomaterials for advanced drug delivery and therapy. Acta Biomater 86:1–14

    Article  CAS  PubMed  Google Scholar 

  • Liu CG et al (2014) MicroRNA-193b is a regulator of amyloid precursor protein in the blood and cerebrospinal fluid derived exosomal microRNA-193b is a biomarker of Alzheimer’s disease. Mol Med Rep 10(5):2395–2400

    Article  CAS  PubMed  Google Scholar 

  • Liu CG et al (2021a) MicroRNA-135a in ABCA1-labeled exosome is a serum biomarker candidate for Alzheimer’s disease. Biomed Environ Sci 34(1):19–28

    CAS  PubMed  Google Scholar 

  • Liu CG et al (2021b) ABCA1-labeled exosomes in serum contain higher microRNA-193b levels in Alzheimer’s disease. Biomed Res Int 2021:5450397

    PubMed  PubMed Central  Google Scholar 

  • Lugli G et al (2015) Plasma exosomal miRNAs in persons with and without Alzheimer disease: Altered expression and prospects for biomarkers. PLoS One 10(10):e0139233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manna I et al (2020) Exosomal miRNAs as potential diagnostic biomarkers in Alzheimer's disease. Pharmaceuticals (Basel) 13(9)

  • Martin M (2011) CUTADAPT removes adapter sequences from high-throughput sequencing reads. EMBnet. J 17

  • Masters CL et al (2015) Alzheimer’s disease. Nat Rev Dis Primers 1:15056

    Article  PubMed  Google Scholar 

  • McKeever PM et al (2018) MicroRNA expression levels are altered in the cerebrospinal fluid of patients with Young-Onset Alzheimer’s disease. Mol Neurobiol 55(12):8826–8841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mitchell PS et al (2008) Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci USA 105(30):10513–10518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mustapic M et al (2017) Plasma extracellular vesicles enriched for neuronal origin: A potential window into brain pathologic processes. Front Neurosci 11:278

    Article  PubMed  PubMed Central  Google Scholar 

  • Ogata-Kawata H et al (2014) Circulating exosomal microRNAs as biomarkers of colon cancer. PLoS One 9:e92921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patients C (2019) Alzheimer's association 2019. Alzheimer's disease facts and figures. Alzheimer's and Dementia 15(3)

  • Pathan M et al (2017) A novel community driven software for functional enrichment analysis of extracellular vesicles data. J Extracell Vesicles 6(1):1321455

    Article  PubMed  PubMed Central  Google Scholar 

  • Paul P et al (2018) Interplay between miRNAs and human diseases. J Cell Physiol 233(3):2007–2018

    Article  CAS  PubMed  Google Scholar 

  • Prada I et al (2018) Glia-to-neuron transfer of miRNAs via extracellular vesicles: a new mechanism underlying inflammation-induced synaptic alterations. Acta Neuropathol 135(4):529–550

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rabbito A et al (2020) Biochemical markers in Alzheimer's disease. Int J Mol Sci 21(6)

  • Rani A et al (2017) miRNA in circulating microvesicles as biomarkers for age-related cognitive decline. Front Aging Neurosci 9(323)

  • Sancesario GM, Bernardini S (2018) Diagnosis of neurodegenerative dementia: where do we stand, now? Ann Transl Med 6(17):340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serpente M et al (2020) MiRNA profiling in plasma neural-derived small extracellular vesicles from patients with Alzheimer’s disease. Cells 9(6):1443

    Article  CAS  PubMed Central  Google Scholar 

  • Théry C et al (2018) Minimal information for studies of extracellular vesicles 2018 (MISEV2018): a position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J Extracell Vesicles 7(1):1535750

    Article  PubMed  PubMed Central  Google Scholar 

  • Valadi H et al (2007) Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol 9(6):654–659

    Article  CAS  PubMed  Google Scholar 

  • Van Giau V, An SS (2016) Emergence of exosomal miRNAs as a diagnostic biomarker for Alzheimer’s disease. J Neurol Sci 360:141–152

    Article  CAS  PubMed  Google Scholar 

  • Worst TS et al (2019) miR-10a-5p and miR-29b-3p as extracellular vesicle-associated prostate cancer detection markers. Cancers 12(1):43

    Article  CAS  PubMed Central  Google Scholar 

  • Xiao T et al (2017) The role of exosomes in the pathogenesis of Alzheimer’ disease. Transl Neurodegener 6:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu B et al (2017) Neurons secrete miR-132-containing exosomes to regulate brain vascular integrity. Cell Res 27(7):882–897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang TT et al (2018) The serum exosome derived microRNA-135a, -193b, and -384 were potential Alzheimer’s disease biomarkers. Biomed Environ Sci 31(2):87–96

    CAS  PubMed  Google Scholar 

  • Yue B et al (2020) Characterization and transcriptome analysis of exosomal and nonexosomal RNAs in bovine adipocytes. Int J Mol Sci 21(23)

  • Zhang Y et al (2019) Exosomes: biogenesis, biologic function and clinical potential. Cell Biosci 9:19

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Ben Cathcart for his critical reading of the manuscript, IBG Optical Imaging Core facility members, and Genc Laboratory research technician Nilsu Askin for their contribution.

Funding

This study was financially supported by The Scientific and Technological Research Council of Turkey (TUBITAK, Project No: 217S584).

Author information

Authors and Affiliations

Authors

Contributions

SG and GY designed the study. DYD, BT, MO designed and performed the experiments. DYD, BT, KUT, HU, GK, GY, and SG analyzed and interpreted the data. DYD, BT, KUT, and SG wrote the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Sermin Genc.

Ethics declarations

Ethics Approval

The study was carried out according to the principles of the Declaration of Helsinki, and it was approved by the clinical research ethics committee of Dokuz Eylul University (approval date: August 21, 2017; protocol number: 399-SBKAEK).

Consent to Participate

Written informed consents were provided by all the patients or legal custodians and the healthy controls.

Consent for Publication

All the authors agree to the publication of this work.

Competing Interests

The authors declare that no competing interests could be construed as a potential conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durur, D.Y., Tastan, B., Ugur Tufekci, K. et al. Alteration of miRNAs in Small Neuron-Derived Extracellular Vesicles of Alzheimer's Disease Patients and the Effect of Extracellular Vesicles on Microglial Immune Responses. J Mol Neurosci 72, 1182–1194 (2022). https://doi.org/10.1007/s12031-022-02012-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-022-02012-y

Keywords

Navigation