Skip to main content

Advertisement

Log in

Effects of Porphyromonas gingivalis and Its Underlying Mechanisms on Alzheimer-Like Tau Hyperphosphorylation in Sprague-Dawley Rats

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Hyperphosphorylated tau is the main component of neurofibrillary tangles and involved in the pathogenesis of Alzheimer’s disease (AD). Increasing evidences suggest close associations between Porphyromonas gingivalis (P. gingivalis) and AD, but the relationship between P. gingivalis and tau hyperphosphorylation is still unclear. In this study, we investigated whether peripheral infection with P. gingivalis caused tau hyperphosphorylation by using wild Sprague-Dawley (SD) rats and HT-22 cells. The rats were injected with P. gingivalis suspension or phosphate-buffered saline 3 times per week. After 4 weeks or 12 weeks, the rats were sacrificed for analyzing systemic inflammation, neuroinflammation, and tau hyperphosphorylation. The results showed that the severity of phosphorylated tau at the AD-related sites Thr181 and Thr231 and the number of activated astrocytes were notably greater in the hippocampus of rats with P. gingivalis injection. And the levels of the inflammatory cytokines interleukin (IL)-1β and IL-6 and tumor necrosis factor-α in serum and hippocampus were also increased in the rats with P. gingivalis injection. In addition, the activity of protein phosphatase 2A (PP2A) was significantly inhibited in the hippocampus of rats with P. gingivalis injection. In vitro, IL-1β induced tau hyperphosphorylation by inhibiting the activity of PP2A in HT-22 cells and application of the PP2A promoter efficiently attenuated IL-1β-induced tau hyperphosphorylation in HT-22 cells. These results indicated that P. gingivalis could induce tau hyperphosphorylation via, in part, attenuating the activity of PP2A through triggering systemic inflammation and neuroinflammation in wild-type SD rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated and analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  • Bejanin A, Schonhaut DR, La Joie R, Kramer JH, Baker SL, Sosa N, Ayakta N, Cantwell A, Janabi M, Lauriola M, O’Neil JP, Gorno-Tempini ML, Miller ZA, Rosen HJ, Miller BL, Jagust WJ, Rabinovici GD (2017) Tau pathology and neurodegeneration contribute to cognitive impairment in Alzheimer’s disease. Brain 140:3286–3300

    PubMed  PubMed Central  Google Scholar 

  • Belstrom D, Holmstrup P, Damgaard C, Borch TS, Skjodt MO, Bendtzen K, Nielsen CH (2011) The atherogenic bacterium Porphyromonas gingivalis evades circulating phagocytes by adhering to erythrocytes. Infect Immun 79:1559–1565

    PubMed  PubMed Central  Google Scholar 

  • Bielecka E, Scavenius C, Kantyka T, Jusko M, Mizgalska D, Szmigielski B, Potempa B, Enghild JJ, Prossnitz ER, Blom AM, Potempa J (2014) Peptidyl arginine deiminase from Porphyromonas gingivalis abolishes anaphylatoxin C5a activity. J Biol Chem 289:32481–32487

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blennow K, Zetterberg H (2018) Biomarkers for Alzheimer’s disease: current status and prospects for the future. J Intern Med 284:643–663

    CAS  PubMed  Google Scholar 

  • Cai Z, Wan CQ, Liu Z (2017) Astrocyte and Alzheimer’s disease. J Neurol 264:2068–2074

    CAS  PubMed  Google Scholar 

  • Cameron B, Landreth GE (2010) Inflammation, microglia, and Alzheimer’s disease. Neurobiol Dis 37:503–509

    CAS  PubMed  Google Scholar 

  • Chou RC, Kane M, Ghimire S, Gautam S, Gui J (2016) Treatment for rheumatoid arthritis and risk of Alzheimer’s disease: a nested case-control analysis. CNS Drugs 30:1111–1120

    CAS  PubMed  PubMed Central  Google Scholar 

  • d'Avila JC, Siqueira LD, Mazeraud A, Azevedo EP, Foguel D, Castro-Faria-Neto HC, Sharshar T, Chretien F, Bozza FA (2018) Age-related cognitive impairment is associated with long-term neuroinflammation and oxidative stress in a mouse model of episodic systemic inflammation. J Neuroinflammation 15:28

    PubMed  PubMed Central  Google Scholar 

  • Ding Y, Ren J, Yu H, Yu W, Zhou Y (2018) Porphyromonas gingivalis, a periodontitis causing bacterium, induces memory impairment and age-dependent neuroinflammation in mice. Immunity Ageing 15:6

    PubMed  PubMed Central  Google Scholar 

  • Dolan D, Troncoso J, Resnick SM, Crain BJ, Zonderman AB, O'Brien RJ (2010) Age, Alzheimer’s disease and dementia in the Baltimore longitudinal study of ageing. Brain 133:2225–2231

    PubMed  PubMed Central  Google Scholar 

  • Dominy SS, Lynch C, Ermini F et al (2019) Porphyromonas gingivalis in Alzheimer’s disease brains: evidence for disease causation and treatment with small-molecule inhibitors. Sci Adv 5:eaau3333

  • Drummond E, Wisniewski T (2017) Alzheimer’s disease: experimental models and reality. Acta Neuropathol 133:155–175

    CAS  PubMed  Google Scholar 

  • Forner L, Larsen T, Kilian M, Holmstrup P (2006) Incidence of bacteremia after chewing, tooth brushing and scaling in individuals with periodontal inflammation. J Clin Periodontol 33:401–407

    PubMed  Google Scholar 

  • Gao Y, Tan L, Yu JT, Tan L (2018) Tau in Alzheimer’s disease: mechanisms and therapeutic strategies. Curr Alzheimer Res 15:283–300

    CAS  PubMed  Google Scholar 

  • Garwood CJ, Pooler AM, Atherton J, Hanger DP, Noble W (2011) Astrocytes are important mediators of Abeta-induced neurotoxicity and tau phosphorylation in primary culture. Cell Death Dis 2:e167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Wu MD, Shaftel SS, Kyrkanides S, LaFerla FM, Olschowka JA, O'Banion MK (2013) Sustained interleukin-1beta overexpression exacerbates tau pathology despite reduced amyloid burden in an Alzheimer’s mouse model. J Neurosci 33:5053–5064

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hammond CJ, Hallock LR, Howanski RJ, Appelt DM, Little CS, Balin BJ (2010) Immunohistological detection of Chlamydia pneumoniae in the Alzheimer’s disease brain. BMC Neurosci 11:121

    PubMed  PubMed Central  Google Scholar 

  • Heneka MT, Carson MJ, El Khoury J et al (2015) Neuroinflammation in Alzheimer’s disease. Lancet Neurol 14:388–405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Herrup K (2010) Reimagining Alzheimer’s disease-an age-based hypothesis. J Neurosci 30:16755–16762

    CAS  PubMed  PubMed Central  Google Scholar 

  • Honjo K, van Reekum R, Verhoeff NP (2009) Alzheimer’s disease and infection: do infectious agents contribute to progression of Alzheimer’s disease? Alzheimers Dement 5:348–360

    PubMed  Google Scholar 

  • Hussain M, Stover CM, Dupont A (2015) P. gingivalis in periodontal disease and atherosclerosis -scenes of action for antimicrobial peptides and complement. Front Immunol 6:45

    PubMed  PubMed Central  Google Scholar 

  • Ilievski V, Zuchowska PK, Green SJ, Toth PT, Ragozzino ME, Le K, Aljewari HW, O'Brien-Simpson NM, Reynolds EC, Watanabe K (2018) Chronic oral application of a periodontal pathogen results in brain inflammation, neurodegeneration and amyloid beta production in wild type mice. PLoS One 13:e0204941

    PubMed  PubMed Central  Google Scholar 

  • Ishida N, Ishihara Y, Ishida K, Tada H, Funaki-Kato Y, Hagiwara M, Ferdous T, Abdullah M, Mitani A, Michikawa M, Matsushita K (2017) Periodontitis induced by bacterial infection exacerbates features of Alzheimer’s disease in transgenic mice. NPJ Aging Mech Dis 3:15

    PubMed  PubMed Central  Google Scholar 

  • Kawada M, Yoshida A, Suzuki N, Nakano Y, Saito T, Oho T, Koga T (2004) Prevalence of Porphyromonas gingivalis in relation to periodontal status assessed by real-time PCR. Oral Microbiol Immunol 19:289–292

    CAS  PubMed  Google Scholar 

  • Kitazawa M, Cheng D, Tsukamoto MR, Koike MA, Wes PD, Vasilevko V, Cribbs DH, LaFerla FM (2011) Blocking IL-1 signaling rescues cognition, attenuates tau pathology, and restores neuronal β-catenin pathway function in an Alzheimer’s disease model. J Immunol 187:6539–6549

    CAS  PubMed  Google Scholar 

  • Kozarov EV, Dorn BR, Shelburne CE (2005) Human atherosclerotic plaque contains viable invasive Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Arterioscler Thromb Vasc Biol 25:e17–e18

    CAS  PubMed  Google Scholar 

  • Krstic D, Madhusudan A, Doehner J, Vogel P, Notter T, Imhof C, Manalastas A, Hilfiker M, Pfister S, Schwerdel C, Riether C, Meyer U, Knuesel I (2012) Systemic immune challenges trigger and drive Alzheimer-like neuropathology in mice. J Neuroinflammation 9:151

    CAS  PubMed  PubMed Central  Google Scholar 

  • Little CS, Hammond CJ, MacIntyre A, Balin BJ, Appelt DM (2004) Chlamydia pneumoniae induces Alzheimer-like amyloid plaques in brains of BALB/c mice. Neurobiol Aging 25:419–429

    CAS  PubMed  Google Scholar 

  • Martin L, Latypova X, Wilson CM, Magnaudeix A, Perrin ML, Terro F (2013) Tau protein phosphatases in Alzheimer’s disease: the leading role of PP2A. Ageing Res Rev 12:39–49

    CAS  PubMed  Google Scholar 

  • Miklossy J, Khalilib K, Gernc L, Ericsond RL, Darekara P, Bollee L, Hurlimanna J, Pasterd BJ (2004) Borrelia burgdorferi persists in the brain in chronic Lyme neuroborreliosis and may be associated with Alzheimer disease. J Alzheimer Dis 6:639–649

    Google Scholar 

  • Miklossy J, Kis A, Radenovic A, Miller L, Forro L, Martins R, Reiss K, Darbinian N, Darekar P, Mihaly L, Khalili K (2006) Beta-amyloid deposition and Alzheimer’s type changes induced by Borrelia spirochetes. Neurobiol Aging 27:228–236

    CAS  PubMed  Google Scholar 

  • Mougeot JC, Stevens CB, Paster BJ, Brennan MT, Lockhart PB, Mougeot FK (2017) Porphyromonas gingivalis is the most abundant species detected in coronary and femoral arteries. J Oral Microbiol 9:1281562

    PubMed  PubMed Central  Google Scholar 

  • Noble JM, Borrell LN, Papapanou PN, Elkind MS, Scarmeas N, Wright CB (2009) Periodontitis is associated with cognitive impairment among older adults: analysis of NHANES-III. J Neurol Neurosurg Psychiatry 80:1206–1211

    CAS  PubMed  Google Scholar 

  • Olsen I, Progulske-Fox A (2015) Invasion of Porphyromonas gingivalis strains into vascular cells and tissue. J Oral Microbiol 7:28788

    PubMed  Google Scholar 

  • Olsen I, Singhrao SK (2015) Can oral infection be a risk factor for Alzheimer’s disease. J Oral Microbiol 7:29143

    PubMed  Google Scholar 

  • Park J, Wetzel I, Marriott I, Dréau D, D'Avanzo C, Kim DY, Tanzi RE, Cho H (2018) A 3D human triculture system modeling neurodegeneration and neuroinflammation in Alzheimer’s disease. Nat Neurosci 21:941–951

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perry VH, Newman TA, Cunningham C (2003) The impact of systemic infection on the progression of neurodegenerative disease. Nat Rev Neurosci 4:103–112

    CAS  PubMed  Google Scholar 

  • Poole S, Singhrao SK, Kesavalu L, Curtis MA, Crean S (2013) Determining the presence of periodontopathic virulence factors in short-term postmortem Alzheimer’s disease brain tissue. J Alzheimers Dis 36:665–677

    CAS  PubMed  Google Scholar 

  • Poole S, Singhrao SK, Chukkapalli S, Rivera M, Velsko I, Kesavalu L, Crean S (2015) Active invasion of Porphyromonas gingivalis and infection-induced complement activation in ApoE-/- mice brains. J Alzheimers Dis 43:67–80

    CAS  PubMed  Google Scholar 

  • Pyysalo MJ, Pyysalo LM, Pessi T, Karhunen PJ, Lehtimäki T, Oksala N, Öhman JE (2016) Bacterial DNA findings in ruptured and unruptured intracranial aneurysms. Acta Odontol Scand 74:315–320

    CAS  PubMed  Google Scholar 

  • Qian W, Shi J, Yin X, Iqbal K, Grundke-Iqbal I, Gong CX, Liu F (2010) PP2A regulates tau phosphorylation directly and also indirectly via activating GSK-3β. J Alzheimers Dis 19:1221–1229

    CAS  PubMed  Google Scholar 

  • Scheltens P, Blennow K, Breteler MM, de Strooper B, Frisoni GB, Salloway S, Van der Flier WM (2016) Alzheimer’s disease. Lancet 388:505–517

    CAS  PubMed  Google Scholar 

  • Shi JQ, Shen W, Chen J, Wang BR, Zhong LL, Zhu YW, Zhu HQ, Zhang QQ, Zhang YD, Xu J (2011) Anti-TNF-α reduces amyloid plaques and tau phosphorylation and induces CD11c-positive dendritic-like cell in the APP/PS1 transgenic mouse brains. Brain Res 1368:239–247

    CAS  PubMed  Google Scholar 

  • Singhrao SK, Olsen I (2019) Assessing the role of Porphyromonas gingivalis in periodontitis to determine a causative relationship with Alzheimer’s disease. J oral microbiol 11:1563405

    CAS  PubMed  PubMed Central  Google Scholar 

  • Spires-Jones TL, Hyman BT (2014) The intersection of amyloid beta and tau at synapses in Alzheimer’s disease. Neuron 82:756–771

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sy M, Kitazawa M, Medeiros R, Whitman L, Cheng D, Lane TE, Laferla FM (2011) Inflammation induced by infection potentiates tau pathological features in transgenic mice. Am J Pathol 178:2811–2822

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda S, Sato N, Ikimura K, Nishino H, Rakugi H, Morishita R (2013) Increased blood-brain barrier vulnerability to systemic inflammation in an Alzheimer disease mouse model. Neurobiol Aging 34:2064–2070

    CAS  PubMed  Google Scholar 

  • Teixeira FB, Saito MT, Matheus FC, Prediger RD, Yamada ES, Maia CSF, Lima RR (2017) Periodontitis and Alzheimer’s disease: a possible comorbidity between oral chronic inflammatory condition and neuroinflammation. Front Aging Neurosci 9:327

    PubMed  PubMed Central  Google Scholar 

  • Wang JZ, Xia YY, Grundke-Iqbal I, Iqbal K (2013) Abnormal hyperphosphorylation of tau: sites, regulation, and molecular mechanism of neurofibrillary degeneration. J Alzheimers Dis 33(Suppl 1):S123–S139

    PubMed  Google Scholar 

  • Wang Y, Yang R, Gu J, Yin X, Jin N, Xie S, Wang Y, Chang H, Qian W, Shi J, Iqbal K, Gong CX, Cheng C, Liu F (2015a) Cross talk between PI3K-AKT-GSK-3beta and PP2A pathways determines tau hyperphosphorylation. Neurobiol Aging 36:188–200

    PubMed  Google Scholar 

  • Wang XL, Zeng J, Yang Y, Xiong Y, Zhang ZH, Qiu M, Yan X, Sun XY, Tuo QZ, Liu R, Wang JZ (2015b) Helicobacter pylori filtrate induces Alzheimer-like tau hyperphosphorylation by activating glycogen synthase kinase-3β. J Alzheimers Dis 43:153–165

    PubMed  Google Scholar 

  • Wang RP, Ho YS, Leung WK, Goto T, Chang RC (2019) Systemic inflammation linking chronic periodontitis to cognitive decline. Brain Behav Immun 81:63–73

    PubMed  Google Scholar 

  • Wu Z, Nakanishi H (2014) Connection between periodontitis and Alzheimer’s disease: possible roles of microglia and leptomeningeal cells. J Pharmacol Sci 126:8–13

    CAS  PubMed  Google Scholar 

  • Xiong Y, Jing XP, Zhou XW, Wang XL, Yang Y, Sun XY, Qiu M, Cao FY, Lu YM, Liu R, Wang JZ (2013) Zinc induces protein phosphatase 2A inactivation and tau hyperphosphorylation through Src dependent PP2A (tyrosine 307) phosphorylation. Neurobiol Aging 34:745–756

    CAS  PubMed  Google Scholar 

  • Xuan Y, Gao Y, Huang H, Wang X, Cai Y, Luan QX (2017) Tanshinone IIA attenuates atherosclerosis in apolipoprotein E knockout mice infected with Porphyromonas gingivalis. Inflammation 40:1631–1642

    CAS  PubMed  Google Scholar 

  • Yamakawa M, Ouhara K, Kajiya M, Munenaga S, Kittaka M, Yamasaki S, Takeda K, Takeshita K, Mizuno N, Fujita T, Sugiyama E, Kurihara H (2016) Porphyromonas gingivalis infection exacerbates the onset of rheumatoid arthritis in SKG mice. Clin Exp Immunol 186:177–189

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank MD Fu-Lei Zeng and PhD Sha-Sha Yuan for their help with the experiments and State Key Laboratory of Oral Diseases for P. gingivalis strain.

Funding

This work was supported by a research grant from Sichuan Province Science and technology key research and development program, Chengdu, China (grant no. 2018SZ0163), and Geriatric Health Care and Medical Research Center, Sichuan University, Chengdu, Sichuan Province, China.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Hongkun Wu was responsible for conceiving, designing, and supervising the present study, and revising the manuscript. Material preparation, data collection, and analysis were performed by Zhiqun Tang, Dan Liang, Miaoying Cheng, Xinyi Su, Runhe Liu, and Yiding Zhang. The first draft of the manuscript was written by Zhiqun Tang and Dan Liang; all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hongkun Wu.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Ethics Declarations

All animal experiments were conducted at State Key Laboratory of Oral Diseases and were licensed by Research Ethics Committee of West China Hospital of Stomatology (No. WCHSIRB-D-2017-001).

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic Supplementary Material

ESM 1

(PDF 86 kb)

ESM 2

(PDF 368 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, Z., Liang, D., Cheng, M. et al. Effects of Porphyromonas gingivalis and Its Underlying Mechanisms on Alzheimer-Like Tau Hyperphosphorylation in Sprague-Dawley Rats. J Mol Neurosci 71, 89–100 (2021). https://doi.org/10.1007/s12031-020-01629-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-020-01629-1

Keywords

Navigation