Skip to main content
Log in

Intranasal Erythropoietin Protects CA1 Hippocampal Cells, Modulated by Specific Time Pattern Molecular Changes After Ischemic Damage in Rats

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Erythropoietin, a multitarget molecule exhibited neuroprotective properties, especially against cerebral ischemia. However, little effort has been made to determinate both the administration pathway and doses that diminishes neuronal damage. In this study, we investigate the effect on CA1 region of different intranasal doses of rHuEPO (500, 1000 and 2500 IU/kg) applied in distinct post-damage times (1, 6, and 24 h) against ischemic cellular damage. Furthermore, most effective dose and time were used to evaluate gen and protein expression changes in 3 key molecules (EPO, EPOR, and βcR). We established that CA1-region present histopathological damage in this ischemia model and that rHuEPO protects cells against damage, particularly at 1000 IU dose. Molecular data shows that EPO and EPOR gene expression are upregulated in a short term after damage treatment with rHuEPO (1 h); oppositely, BcR is upregulated in ischemic and Isc + EPO. Protein expression data displays no changes on EPO expression in evaluated times after treatment, but a tendency to increase 24 h after damage; in the opposite way, EPOR is upregulated significantly 6 h after treatment and this effect last until 24 h. So, our data suggest that a single intranasal dose of rHuEPO (1 h post-injury) provides histological neurorestoration in CA1 hippocampal region, even if we did not observe a dose-dependent dose effect, the medium dose evaluated (1000 UI/kg of b.w.) was more effective and sufficient for induces molecular changes that provides a platform for neuroprotection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alcalá-Barraza RS, Lee MS, Hanson LR, McDonald AA, Frey WH II, McLoon LK (2010) Intranasal delivery of neurotrophic factors BDNF, CNTF, EPO, and NT-4 to the CNS. J Drug Target 18:179–190

    Article  Google Scholar 

  • Arcasoy MO (2008) The non-hematopoietic biological effects of erythropoietin. Br J Haematol 141:14–31

    Article  CAS  Google Scholar 

  • Asadi B, Askari GR, Khorvash F, Bagherpur A, Mahrabi F, Karimi M, Ghasemi M, Najjaran A (2013) Neuroprotective effects of erythropoietin in acute ischemic stroke. Int J Prev Med 4:S306–S312

    PubMed  PubMed Central  Google Scholar 

  • Baron JC, Yamauchi H, Fujioka M, Endres M (2014) Selective neuronal loss in ischemic stroke and cerebrovascular disease. J Cereb Blood Flow Metab 34:2–18

    Article  Google Scholar 

  • Bauernfeind AL, Babbitt CC (2017) The predictive nature of transcript expression levels on protein expression in adult human brain. BMC Genomics 18:322

    Article  Google Scholar 

  • Beleslin-Cokic BB, Cokic VP, Yu X, Weksler BB, Schechter AN, Noguchi CT (2004) Erythropoietin and hypoxia stimulate erythropoietin receptor and nitric oxide production by endothelial cells. Blood. 104:2073–2080

    Article  CAS  Google Scholar 

  • Bernaudin M, Marti HH, Roussel S, Divoux D, Nouvelot A, MacKenzie ET, Petit E (1999) A potential role for erythropoietin in focal permanent cerebral ischemia in mice. J Cereb Blood Flow Metab 19(6):643–651

    Article  CAS  Google Scholar 

  • Brines B, Cerami A (2012) The receptor that tames the innate immune response. Mol Med 18:486–496

    Article  CAS  Google Scholar 

  • Brines ML, Ghezzi P, Keenan S, Agnello D, De Lanerolle NC, Cerami C, Itri LW, Cerami A (2000) Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proc Natl Acad Sci U S A 97:10526–10531

    Article  CAS  Google Scholar 

  • Brines ML, Grasso G, Fiordaliso F, Sfacteria A, Ghezzi P, Fratelli M (2004) Erythropoietin mediates tissue protection through an erythropoietin and common beta-subunit heteroreceptor. Proc Natl Acad Sci U S A 101:14907–14912

    Article  CAS  Google Scholar 

  • Byts N, Sirén AL (2009) Erythropoietin: a multimodal neuroprotective agent. Exp Transl Stroke Med 1:4–12

    Article  Google Scholar 

  • Cheng NT, Kim AS (2015) Intravenous thrombolysis for acute ischemic stroke within 3 hours versus between 3 and 4.5 hours of symptom onset. Neurohospitalist 5:101–109

    Article  Google Scholar 

  • Cherian L, Godman JG, Robertson C (2007) Neuroprotection with erythropoietin administration following controlled cortical impact injury in rats. J Pharmacol Exp Ther 322:789–794

    Article  CAS  Google Scholar 

  • Chin K, Oda N, Shen K, Noguchi CT (1995) Regulation of transcription of the human erythropoietin receptor gene by proteins binding to GATA-1 and Sp1 motifs. Nucleic Acids Res 11:3041–3049

    Article  Google Scholar 

  • Detante O, Jaillard A, Moisan A, Barbieux M, Favre IM, Garambois K, Hommel M, Remy C (2014) Biotherapies in stroke. Rev Neurol 170:779–798

    Article  CAS  Google Scholar 

  • Dietrich WD (2017) Histopathology of cerebral ischemia and stroke. In: Caplan LR, Biller J, Leary MC (eds) Primer on cerebrovascular diseases. Academic Press, London, pp 121–124

    Google Scholar 

  • Digicaylioglu M, Lipton SA (2001) Erythropoietin-mediated neuroprotection involves cross-talk between Jak2 and NF-κB signaling cascades. Nature 412:641–647

    Article  CAS  Google Scholar 

  • Ehrenreich H, Hasselblatt M, Dembowski C, Cepek L, Lewczuk P, Stiefel M, Rustenbeck HH, Breiter N, Jacob S, Knerlich F, Bohn M, Poser W, Rüther E, Kochen M, Gefeller O, Gleiter C, Wessel TC, de Ryck M, Itri L, Prange H, Cerami A, Brines M, Sirén AL (2002) Erythropoietin therapy for acute stroke is both safe and beneficial. Mol Med 8:495–505

    Article  CAS  Google Scholar 

  • Ehrenreich H, Weissenborn K, Prange H, Schneider D, Weimar C, Wartenberg K, Schellinger PD, Bohn M, Becker H et al (2009) Recombinant human erythropoietin in the treatment of acute ischemic stroke. Stroke 40:647–656

    Article  Google Scholar 

  • Falcone JA, Salameh TS, Yi X, Cordy BJ, Mortell WG, Kabanov AV, Banks WA (2014) Intranasal administration as a route for drug delivery to the brain: evidence for unique pathway for albumin. J Pharmacol Exp Ther 351:54–60

    Article  Google Scholar 

  • Fishbane S, Besarab A (2007) Mechanism of increased mortality risk with erythropoietin treatment to higher hemoglobin targets. Clin J Am Soc Nephrol 2:1274–1282

    Article  CAS  Google Scholar 

  • Fisher JW (2003) Erythropoietin: physiology and pharmacology update. Exp Biol Med (Maywood) 228:1–14

    Article  CAS  Google Scholar 

  • Fugate JE, Giraldo EA, Rabinstein AA (2010) Thrombolysis for cerebral ischemia. Front Neurol 1:1–7

    Article  Google Scholar 

  • Gao Y, Mengana Y, Cruz YR, Muñoz A, Testé IS, García JD, Wu Y, García-Rodríguez JC et al (2011) Different expression patterns of Ngb and EPOR in the cerebral cortex and hippocampus revealed distinctive therapeutic effects of intranasal delivery of neuro-EPO for ischemic insults to the gerbil brain. J Histochem Cytochem 59:214–227

    Article  CAS  Google Scholar 

  • García-Rodríguez JC, Sosa-Teste I (2009) The nasal route as a potential pathway for delivery of erythropoietin in the treatment of acute ischemic stroke in humans. Sci World J 9:970–981

    Article  Google Scholar 

  • Gorio A, Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C, Di Giulio MA, Vardar E et al (2002) Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci U S A 99:9450–9455

    Article  CAS  Google Scholar 

  • Greenbaum D, Colangelo C, Williams K, Gerstein M (2003) Comparing protein abundance and mRNA expression levels on a genomic scale. Genome Biol 4:117

    Article  Google Scholar 

  • Harukini I, Bhardwaj A (2006) Mechanism of brain injury after global cerebral ischemia. Neurol Clin 24:1–21

    Article  Google Scholar 

  • Jelkmann W (2005) Effects of erythropoietin on brain function. Curr Pharm Biotechnol 6:65–79

    Article  CAS  Google Scholar 

  • Jubinsky PT, Krijanovski OI, Nathan DG, Tavernier J, Sieff CA (1997) The beta chain of the interleukin-3 receptor functionally associates with the erythropoietin receptor. Blood. 90:1867–1873

    CAS  PubMed  Google Scholar 

  • Kågström E, Smith ML, Siesjö BK (1983) Local cerebral blood flow recovery period following complete cerebral ischemia in the rat. J Cereb Blood Flow Metab :170–182

  • Kellert BA, McPherson RJ, Juul SE (2007) A comparison of high-dose recombinant erythropoietin treatment regimens in brain-injured neonatal rats. Pediatr Res 61:451–455

    Article  CAS  Google Scholar 

  • Kilic E, Kilic U, Soliz J, Bassetti CL, Gassmann M, Hermann DM (2005) Brain-derived erythropoietin protects from focal cerebral ischemia by dual activation of ERK-1/-2 and Akt pathways. FASEB J 19:2026–2028

    Article  CAS  Google Scholar 

  • Kirkeby A, Torup L, Bochsen L, Kjalke M, Abel K, Theilgaard-Monch K, Johansson PI, Bjørn SE et al (2008) High-dose erythropoietin alters platelet reactivity and bleeding time in rodents in contrast to the neuroprotective variant carbamyl-erythropoietin (CEPO). Thromb Haemost 99:720–728

    Article  CAS  Google Scholar 

  • Koehler RC (1997). Large animal models of focal and global cerebral ischemia. In: Ginsberg MD, Bogousslavsky J (eds) Cerebrovascular Disease: Pathophysiology, Diagnosis and Management. Oxford, Blackwell Science, pp 36-51

  • La Ferla K, Reimann C, Jelkmann W, Hellwig-Bürgel T (2002) Inhibition of erythropoietin gene expression signaling involves the transcription factors GATA-2 and NF-kappaB. FASEB J 16:1811–1813

    Article  Google Scholar 

  • Lagarto-Parra A, García-Rodríguez JC (2012) Nasal neuro EPO could be reliable choice for neuroprotective stroke treatment. Cent Nerv Syst Agents Med Chem 12:60–68

    Article  Google Scholar 

  • Lamon S, Russell A (2013) The role and regulation of erythropoietin (EPO) and its receptor in skeletal muscle: how much do we really know? Front Physiol 4:176

    Article  Google Scholar 

  • Lee HCR, Lee HHM, Wu CYC, Couto e Silva A, Possoit EH, Hsieh T-H, Minagar A, Lin HW (2018) Cerebral ischemia and neurodegeneration. Neural Regen Res 13(3):373–385

    Article  Google Scholar 

  • Leist M, Ghezzi P, Grasso G, Bianchi R, Villa P, Fratelli M, Savino C, Bianchi M et al (2004) Derivatives of erythropoietin that are tissue protective but not erythropoietic. Science 305:239–242

    Article  CAS  Google Scholar 

  • Liu C, Shen K, Liu Z, Noguchi CT (1997) Regulated human erythropoietin receptor expression in mouse brain. J Biol Chem 272:32395–32400

    Article  CAS  Google Scholar 

  • Lochhead JJ, Thorne RG (2012) Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 64:614–628

    Article  CAS  Google Scholar 

  • Macrez R, Ali C, Toutirais O, Le Mauff B, Defer G, Dirnagl U, Vivien D (2011) Stroke and the immune system: from pathophysiology to new therapeutic strategies. Lancet 10:471–480

    Article  CAS  Google Scholar 

  • Marti HH (2004) Erythropoietin and the hypoxic brain. J Exp Biol 207(Pt(18):3233–3242

    Article  CAS  Google Scholar 

  • Marti HH, Wenger RH, Rivas LA, Straumann U, Digicaylioglu M, Henn V, Yonekawa Y, Bauer C et al (1996) Erythropoietin gene expression in human, monkey and murine brain. Eur J Neurosci 8:666–676

    Article  CAS  Google Scholar 

  • Meng Y, Xiong Y, Mahmood A, Zhang Y, Qu C, Chopp M (2011) Dose-dependent neurorestorative effects of delayed treatment of traumatic brain injury with recombinant human erythropoietin in rats. J Neurosurg 15:550–560

    Article  Google Scholar 

  • Merelli A, Caltana L, Girimonti P, Ramos AJ, Lazarowski A, Brusco (2011) Recovery of motor spontaneous activity after intranasal delivery of human recombinant erythropoietin in a focal brain hypoxia model induced by CoCl2 in rats. Neurotox Res 20:182–192

    Article  CAS  Google Scholar 

  • Merelli A, Czornyj L, Lazarowski A (2015) Erythropoietin as a new therapeutic opportunity in brain inflammation and neurodegenerative diseases. Int J Neurosc 125:793–797

    Article  CAS  Google Scholar 

  • Muñoz-Cernada A, García-Rodríguez JC, Núñez-Figueredo Y, Pardo-Ruiz Z, García-Salman JD, Sosa-Testé I, Curbelo-Rodríguez D, Cruz-Rodríguez J, Subirós-Martínez, N (2005) rh-EPO nasal formulations with low sialic acid concentration for the treatment of diseases of the central nervous system. PCT/CU2006/000007 [WO/2007/009404]

  • Nakase T, Yoshioda S, Suzuki A (2011) Free radical scavenger, edaravone, reduces the lesion size of lacunar infarction in human brain ischemic stroke. BMC Neurol 11:39–48

    Article  CAS  Google Scholar 

  • Nguyen AQ, Cherry BH, Scott GF, Ryou MG, Mallet RT (2014) Erythropoietin: powerful protection of ischemic and pot-ischemic brain. Exp Biol Med 239(11):1461–1475

    Article  Google Scholar 

  • Nirula R, Diaz-Arrastia R, Brasel K, Weigelt JA, Waxman K (2010) Safety and efficacy of erythropoietin in traumatic brain injury patients: a pilot randomized trial. Crit Care Res Pract:ID 209848

  • Nogouchi CT, Asavaritikrai P, Teng R, Jia Y (2007) Role of erythropoietin in the brain. Crit Rev Oncol Hematol 64:159–171

    Article  Google Scholar 

  • Noguchi CT, Wang L, Rogers HM, Teng R, Jia Y (2008) Survival and proliferative roles of erythropoietin beyond the erythroid lineage. Expert Rev Mol Med 10:e36

    Article  Google Scholar 

  • Ogilvie M, Yu X, Nicolas-Metral V, Pulido SM, Liu C, Ruegg UT, Noguchi CT (2000) Erythropoietin stimulates proliferation and interferes with differentiation of myoblasts. J Biol Chem 275:39754–39761

    Article  CAS  Google Scholar 

  • Petito CK, Pulsinelli WA (1984) Delayed neuronal recovery and neuronal death in rat hippocampus following severe cerebral ischemia: possible relationship to abnormalities in neuronal processes. J of Cereb Blood Flow Metab 4:194–205

    Article  CAS  Google Scholar 

  • Pulsinelli WA (1985) Selective neuronal vulnerability: morphological and molecular characteristics. Prog Brain Res 63:29–37

    Article  CAS  Google Scholar 

  • Pulsinelli WA, Duffy DE (1983) Regional energy balance in rat brain after transient forebrain ischemia. J Neurochem 40:1500–1503

    Article  CAS  Google Scholar 

  • Pulsinelli WA, Brierley JB, Plum F (1982) Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 11:491–498

    Article  CAS  Google Scholar 

  • Raval AP, Liu C, Hu BR (2009) Rat model of global cerebral ischemia: the two-vessel occlusion (2-VO) model of forebrain ischemia. In: Chen J, Xu XM, Xu ZC (eds) Animal models of acute neurological injuries. Springer, New York, pp 77–86

    Chapter  Google Scholar 

  • Sadamoto Y, Igase K, Sakanaka M, Sato K, Otsuka H, Sakaki S, Masuda S, Sasaki R (1998) Erythropoietin prevents place navigation disability and cortical infarction in rats with permanent occlusion of the middle cerebral artery. Biochem Biophys Res Commun 253:26–32

    Article  CAS  Google Scholar 

  • Sargin D, Friedrichs H, El-Kordi A, Ehrenreich H (2010) Erythropoietin as neuroprotective and neuroregenerative treatment strategy: comprehensive overview of 12 years of preclinical and clinical research. Best Pract Res Clin Anaesthesiol 24:573–594

    Article  CAS  Google Scholar 

  • Schwanhäusser B, Busse D, Li N, Dittmar G, Schuchhardt J, Wolf J, Chen W, Selbach M (2011) Global quantification of mammalian gene expression control. Nature. 19(473):337–342

    Article  Google Scholar 

  • Shein NA, Grigoriadis N, Alexandrovich AG, Simeonidou C, Spandou E, Tsenter J, Yatsiv I, Horowitz M et al (2008) Differential neuroprotective properties of endogenous and exogenous erythropoietin in a mouse model of traumatic brain injury. J Neurotrauma 25:112–123

    Article  Google Scholar 

  • Shimizu S (2004) Routes of administration. In: Hedrich HJ (ed) The handbook of experimental animals (laboratory mouse). Elsevier, pp 527–541

  • Shingo T, Sorokan ST, Shimakazi T, Weiss S (2001) Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. J Neurosci 21:9733–9743

    Article  CAS  Google Scholar 

  • Shuaib A, Lees KR, Lyden P, Frotta J, Davalos A, Davis SM, Diener HC, Ashwood T et al (2007) NXY-059 for the treatment of acute ischemic stroke. N Engl J Med 357(6):562–571

    Article  CAS  Google Scholar 

  • Sirén AL, Knerlich F, Poser W, Gleiter CH, Brück W, Ehrenreich H (2001) Erythropoietin and erythropoietin receptor in human ischemic/hypoxic brain. Acta Neuropathol 101:271–276

    PubMed  Google Scholar 

  • Smith ML, Bendek G, Dahlgren N, Rosén I, Wieloch T, Siesjö BK (1984) Models for studying long-term recovery following forebrain ischemia in the rat. 2. A 2-vessel occlusion model. Acta Neurol Scand 69:385–401

    Article  CAS  Google Scholar 

  • Stenslink MJ, Potts LF, Sonne JWH, Cass WA, Turchan-Cholewo J, Pomerleau F, Huelt P, Ai Y et al (2015) Methodology and effects of repeated intranasal delivery of DNSP-11in a rat model of Parkinson’s disease. J Neurosci Methods 251:120–129

    Article  Google Scholar 

  • Stohlawetz PJ, Dzirlo L, Hergovich N, Lackner E, Mensik C, Eichler HG, Kabrna E, Geissler K et al (2000) Effects of erythropoietin on platelet reactivity and thrombopoiesis in humans. Blood. 95:2983–2989

    CAS  PubMed  Google Scholar 

  • Sun Y, Zhou C, Polk P, Nanda A, Zhang JH (2004) Mechanisms of erythropoietin-induced brain protection in neonatal hypoxia-ischemia rat model. J Cereb Blood Flow Metab 24:259–270

    Article  CAS  Google Scholar 

  • Tsai PT, Ohab JJ, Kertesz N, Groszer M, Matter C, Gao J (2006) A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. J Neurosci 26:1269–1274

    Article  CAS  Google Scholar 

  • Undén J, Sjölund C, Länsberg JK, Wieloch T, Ruscher K, Romner B (2013) Post-ischemic continuous infusion of erythropoietin enhances recovery of lost memory function after global cerebral ischemia in the rat. BMC Neurosci 12:14–27

    Google Scholar 

  • Villmann C, Becker CM (2007) On the hypes and falls in neuroprotection: targeting the NMDA receptor. SAGE 13(6):594–615

    CAS  Google Scholar 

  • Wang L, Zhang Z, Wang Y, Zhang R, Chopp M (2004a) Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke 35:1732–1737

    Article  CAS  Google Scholar 

  • Wang X, Zhu C, Wang X, Gerwien JG, Schrattenholz A, Sanberg M, Leist M, Blomgren K (2004b) The nonerythropoietic asialoerythropoietin protects against neonatal hypoxia-ischemia as potently as erythropoietin. J Neurochem 91:900–910

    Article  CAS  Google Scholar 

  • Wang R, Wu X, Zhao H, Min L, Tao Z, Ji X, Luo Y (2016) Effects of erythropoietin combined with tissue plasminogen activator on the rats following cerebral ischemia and reperfusion. Brain Circ 2:54–60

    Article  Google Scholar 

  • Xing C, Arai K, Lo EH, Hommel M (2012) Pathophysiologic cascades in ischemic stroke. Int J Stroke 7(5):378–385

    Article  Google Scholar 

  • Xiong ZG, Zhu XM, Chu XP, Minami M, Hey J, Wei WL, MacDonald JF, Wemmie JA et al (2004) Neuroprotection in ischemia: blocking calcium-permeable acid-sensing ion channels. Cell 118:687–698

    Article  CAS  Google Scholar 

  • Yu X, Shacka JJ, Eells JB, Suarez-Quian C, Przygodzki RM, Beleslin-Cokic B (2002) Erythropoietin receptor signalling is required for normal brain development. Development 129:505–516

    CAS  PubMed  Google Scholar 

  • Yu Z, Tang L, Chen L, Li J, Wu W, Hu C (2013) Erythropoietin reduces brain injury after intracerebral hemorrhagic stroke in rats. Mol Med Rep 8:1315–1322

    Article  CAS  Google Scholar 

  • Yuan J (2009) Neuroprotective strategies targeting apoptotic and necrotic cell death for stroke. Apoptosis 14(4):469–477

    Article  Google Scholar 

  • Zhang F, Xing J, Liou AK-F, Wang S, Gan Y, Luo Y, Ji X, Stetler A et al (2010) Enhanced delivery of erythropoietin across the blood-brain barrier for neuroprotection against ischemic neuronal injury. Transl Stroke Res 1:113–121

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Universidad de Guadalajara Program (P3E2018, Pro/SNI 2018, Strengthening Research 2018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. C. Rivera-Cervantes.

Ethics declarations

Conflicts of Interest

The authors declare no conflict of interest.

Ethical Approval

All procedures performed in studies involving animals were in accordance with the ethical national regulations (NOM-062-ZOO-1999) and standards of Guadalajara University’s Bioethics Committee at which the studies were conducted (CC/NN 11-12/00/2012).

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Macias-Velez, R.J., Fukushima-Díaz de León, L., Beas-Zárate, C. et al. Intranasal Erythropoietin Protects CA1 Hippocampal Cells, Modulated by Specific Time Pattern Molecular Changes After Ischemic Damage in Rats. J Mol Neurosci 68, 590–602 (2019). https://doi.org/10.1007/s12031-019-01308-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-019-01308-w

Keywords

Navigation