Skip to main content

Advertisement

Log in

PAC1 Receptors: Shapeshifters in Motion

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Shapeshifters, in common mythology, are entities that can undergo multiple physical transformations. As our understanding of G protein-coupled receptors (GPCRs) has accelerated and been refined over the last two decades, we now understand that GPCRs are not static proteins, but rather dynamic structures capable of moving from one posture to the next, and adopting unique functional characteristics at each transition. This model of GPCR dynamics underlies our current understanding of biased agonism—how different ligands to the same receptor can generate different intracellular signals—and constitutive receptor activity, or the level of unbound basal receptor signaling that can be attenuated by inverse agonists. From information derived from related class B receptors, we have recently modeled the structure and molecular dynamics of the full-length pituitary adenylate cyclase activating polypeptide (PACAP, Adcyap1)—selective PAC1 receptor (PAC1R, Adcyap1r1). The class B receptors are different from the class A GPCRs in part from the presence of a large extracellular domain (ECD); the transitions of the ECD along with the dynamics of the transmembrane domains (TMD or 7TM) of the PAC1R describes a series of open- and closed-state conformations that appear to identify the mechanisms for receptor activation. The PAC1R shapeshifts also have the ability of delineating the mechanisms and the design of reagents that may direct biased agonism (or antagonism) for potential therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adan RA, Kas MJ (2003) Inverse agonism gains weight. Trends Pharmacol Sci 24:315–321

    Article  CAS  PubMed  Google Scholar 

  • Alexander RW, Eargle J, Luthey-Schulten Z (2010) Experimental and computational determination of tRNA dynamics. FEBS Lett 584:376–386

    Article  CAS  PubMed  Google Scholar 

  • Arimura A, Somogyvári-Vigh A, Miyata A, Mizuno K, Coy DH, Kitada C (1991) Tissue distribution of PACAP as determined by RIA: highly abundant in the rat brain and testes. Endocrinology 129:2787–2789

    Article  CAS  PubMed  Google Scholar 

  • Black Pyrkosz A, Eargle J, Sethi A, Luthey-Schulten Z (2010) Exit strategies for charged tRNA from GluRS. J Mol Biol 397:1350–1371

    Article  CAS  PubMed  Google Scholar 

  • Blechman J, Levkowitz G (2013) Alternative splicing of the pituitary adenylate cyclase-activating polypeptide receptor PAC1: mechanisms of fine tuning of brain activity. Front Endocrinol 4:55

    Article  CAS  Google Scholar 

  • Bowman GR, Huang X, Pande VS (2009) Using generalized ensemble simulations and Markov state models to identify conformational states. Methods 49:197–201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Braas KM, May V (1999) Pituitary adenylate cyclase-activating polypeptides directly stimulate sympathetic neuron neuropeptide Y release through PAC(1) receptor isoform activation of specific intracellular signaling pathways. J Biol Chem 274(39):27702–27710

    Article  CAS  PubMed  Google Scholar 

  • Culhane KJ, Liu Y, Cai Y, Yan EC (2015) Transmembrane signal transduction by peptide hormones via family B G protein-coupled receptors. Front Pharmacol 6:264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Graaf C, Song G, Cao C, Zhao Q, Wang MW, Wu B, Stevens RC (2017) Extending the structural view of class B GPCRs. Trends Biochem Sci 42:946–960

    Article  CAS  PubMed  Google Scholar 

  • Edvinsson L, Tajti J, Szalárdy L, Vécsei L (2018) PACAP and its role in primary headaches. J Headache Pain 19(1):21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geppetti P, Veldhuis NA, Lieu T, Bunnett NW (2015) G protein-coupled receptors: dynamic machines for signaling pain and itch. Neuron 88:635–649

    Article  CAS  PubMed  Google Scholar 

  • Hammack SE, May V (2015) Pituitary adenylate cyclase activating polypeptide in stress-related disorders: data convergence from animal and human studies. Biol Psychiatry 78:167–177

    Article  CAS  PubMed  Google Scholar 

  • Hammack SE, Cheung J, Rhodes KM, Schutz KC, Falls WA, Braas KM, May V (2009) Chronic stress increases pituitary adenylate cyclase-activating peptide (PACAP) and brain-derived neurotrophic factor (BDNF) mRNA expression in the bed nucleus of the stria terminalis (BNST): roles for PACAP in anxiety-like behavior. Psychoneuroendocrinology 34:833–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harmar AJ, Fahrenkrug J, Gozes I, Laburthe M, May V, Pisegna JR, Vaudry D, Vaudry H, Waschek JA, Said SI (2012) Pharmacology and functions of receptors for vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptide: IUPHAR review 1. Br J Pharmacol 166:4–17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hollenstein K, de Graaf C, Bortolato A, Wang MW, Marshall FH, Stevens RC (2014) Insights into the structure of class B GPCRs. Trends Pharmacol Sci 35:12–22

    Article  CAS  PubMed  Google Scholar 

  • Hollenstein K, Kean J, Bortolato A, Cheng RKY, Doré AS, Jazayeri A, Cooke RM, Weir M, Marshall FH (2013) Structure of class B GPCR corticotropin-releasing factor receptor 1. Nature 438:438–443

    Article  CAS  Google Scholar 

  • Jazayeri A, Doré AS, Lamb D, Krishnamurthy H, Southall SM, Baig AH, Bortolato A, Koglin M, Robertson NJ, Errey JC, Andrews SP, Teobald I, Brown AJH, Cooke RM, Weir M, Marshall FH (2016) Extra-helical binding site of a glucagon receptor antagonist. Nature 533:274–277

    Article  CAS  PubMed  Google Scholar 

  • Jazayeri A, Rappas M, Brown AJH, Kean J, Errey JC, Robertson NJ, Fiez-Vandal C, Andrews SP, Congreve M, Bortolato A, Mason JS, Baig AH, Teobald I, Doré AS, Weir M, Cooke RM, Marshall FH (2017) Crystal structure of the GLP-1 receptor bound to a peptide agonist. Nature 546:254–258

    Article  CAS  PubMed  Google Scholar 

  • Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the G protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556

    Article  CAS  PubMed  Google Scholar 

  • Kenakin T, Miller LJ (2010) Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 62:265–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura C, Ohkubo S, Ogi K, Hosoya M, Itoh Y, Onda H, Miyata A, Jiang L, Dahl RR, Stibbs HH et al (1990) A novel peptide which stimulates adenylate cyclase: molecular cloning and characterization of the ovine and human cDNAs. Biochem Biophys Res Commun 166:81–89

  • Latorraca NR, Venkatakrishnan AJ, Dror RO (2017) GPCR dynamics: structures in motion. Chem Rev 117(1):139–155

    Article  CAS  PubMed  Google Scholar 

  • Li J, Jonsson AL, Beuming T, Shelley JC, Voth GA (2013) Ligand-dependent activation and deactivation of the human adenosine a(2A) receptor. J Am Chem Soc 135:8749–8759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang YL, Khoshouei M, Radjainia M, Zhang Y, Glukhova A, Tarrasch J, Thal DM, Furness SGB, Christopoulos G, Coudrat T, Danev R, Baumeister W, Miller LJ, Christopoulos A, Kobilka BK, Wootten D, Skiniotis G, Sexton PM (2017) Phase-plate cryo-EM structure of a class B GPCR-G-protein complex. Nature 546:118–123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao C, Zhao X, Brewer M, May V, Li J (2017) Conformational transitions of the pituitary adenylate cyclase-activating polypeptide receptor, a human class B GPCR. Sci Rep 7:5427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luttrell LM, Maudsley S, Bohn LM (2015) Fulfilling the promise of "biased" G protein-coupled receptor agonism. Mol Pharmacol 88:579–588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manglik A, Lin H, Aryal DK, McCorvy JD, Dengler D, Corder G, Levit A, Kling RC, Bernat V, Hübner H, Huang XP, Sassano MF, Giguère PM, Löber S, Duan D, Scherrer G, Kobilka BK, Gmeiner P, Roth BL, Shoichet BK (2016) Structure-based discovery of opioid analgesics with reduced side effects. Nature 537:185–190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • May V, Braas KM (1995) Pituitary adenylate cyclase-activating polypeptide (PACAP) regulation of sympathetic neuron neuropeptide Y and catecholamine expression. J Neurochem 65:978–987

    Article  CAS  PubMed  Google Scholar 

  • Miles OW, Thrailkill EA, Linden AK, May V, Bouton ME, Hammack SE (2018) Pituitary adenylate cyclase-activating peptide in the bed nucleus of the stria terminalis mediates stress-induced reinstatement of cocaine seeking in rats. Neuropsychopharmacology 43:978–986

    Article  CAS  PubMed  Google Scholar 

  • Missig G, Roman CW, Vizzard MA, Braas KM, Hammack SE, May V (2014) Parabrachial nucleus (PBn) pituitary adenylate cyclase activating polypeptide (PACAP) signaling in the amygdala: implication for the sensory and behavioral effects of pain. Neuropharmacology 86:38–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Missig G, Mei M, Vizzard MA, Braas KM, Waschek JA, Ressler KJ, Hammack SE, May V (2016) Parabrachial PACAP activation of amygdala endosomal ERK signaling regulates the emotional component of pain. Biol Psychiatry (in press):http://www.biologicalpsychiatryjournal.com/article/S0006-3223(0016)32725-32721/fulltext

  • Miyata A, Arimura A, Dahl RR, Minamino N, Uehara A, Jiang L, Culler MD, Coy DH (1989) Isolation of a novel 38 residue-hypothalamic polypeptide which stimulates adenylate cyclase in pituitary cells. Biochem Biophys Res Commun 164:567–574

    Article  CAS  PubMed  Google Scholar 

  • Moro O, Lerner EA (1997) Maxadilan, the vasodilator from sand flies is a specific pituitary adenylate cyclase activating polypeptide type I receptor agonist. J Biol Chem 272:966–970

    Article  CAS  PubMed  Google Scholar 

  • Pándy-Szekeres G, Munk C, Tsonkov TM, Mordalski S, Harpsøe K, Hauser AS, Bojarski AJ, Gloriam DE (2018) GPCRdb in 2018: adding GPCR structure models and ligands. Nucleic Acids Res 46:D440–D446

    Article  CAS  PubMed  Google Scholar 

  • Pantaloni C, Brabet P, Bilanges B, Dumuis A, Houssami S, Spengler D, Bockaert J, Journot L (1996) Alternative splicing in the N-terminal extracellular domain of the pituitary adenylate cyclase-activating polypeptide (PACAP) receptor modulates receptor selectivity and relative potencies of PACAP-27 and PACAP-38 in phospholipase C activation. J Biol Chem 271:22146–22151

    Article  CAS  PubMed  Google Scholar 

  • Park PS (2012) Ensemble of G protein-coupled receptor active states. Curr Med Chem 19:1146–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pisegna JR, Wank SA (1996) Cloning and characterization of signal transduction of four splice variants of the human pituitary adenylate cyclase activating polypeptide receptor. J Biol Chem 271:17267–17274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prinz JH, Wu H, Sarich M, Keller B, Senne M, Held M, Chodera JD, Schütte C, Noé F (2011) Markov models of molecular kinetics: generation and validation. J Chem Phys 134:174105

    Article  CAS  PubMed  Google Scholar 

  • Pupo AS, Duarte DA, Lima V, Teixeira LB, Parreiras-E-Silva LT, Costa-Neto CM (2016) Recent updates on GPCR biased agonism. Pharmacol Res 112:49–57

    Article  CAS  PubMed  Google Scholar 

  • Ressler KJ, Mercer KB, Bradley B, Jovanovic T, Mahan A, Kerley K, Norrholm SD, Kilaru V, Smith AK, Myers AJ, Ramirez M, Engel A, Hammack SE, Toufexis D, Braas KM, Binder EB, May V (2011) Post-traumatic stress disorder is associated with PACAP and the PAC1 receptor. Nature 470:492–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roman CW, Lezak KR, Hartsock MJ, Falls WA, Braas KM, Howard AB, Hammack SE, May V (2014) PAC1 receptor antagonism in the bed nucleus of the stria terminalis (BNST) attenuates the endocrine and behavioral consequences of chronic stress. Psychoneuroendocrinology 47:151-165

  • Rosenbaum DM, Rasmussen SG, Kobilka BK (2009) The structure and function of G-protein-coupled receptors. Nature 459:356–363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sethi A, Eargle J, Black AA, Luthey-Schulten Z (2009) Dynamical networks in tRNA:protein complexes. Proc Natl Acad Sci U S A 106:6620–6625

    Article  PubMed  PubMed Central  Google Scholar 

  • Sherwood NM, Krueckl SL, McRory JE (2000) The origin and function of the pituitary adenylate cyclase-activating polypeptide (PACAP)/glucagon superfamily. Endocr Rev 21:619–670

    CAS  PubMed  Google Scholar 

  • Siu FY, He M, de Graaf C, Han GW, Yang D, Zhang Z, Zhou C, Xu Q, Wacker D, Joseph JS, Liu W, Lau J, Cherezov V, Katritch V, Wang MW, Stevens RC (2013) Structure of the human glucagon class B G-protein-coupled receptor. Nature 499(7459):444–449

    Article  CAS  PubMed  Google Scholar 

  • Song G et al (2017) Human GLP-1 receptor transmembrane domain structure in complex with allosteric modulators. Nature 546:312–315

    Article  CAS  PubMed  Google Scholar 

  • Spengler D, Waeber C, Pantaloni C, Holsboer F, Bockaert J, Seeburg PH, Journot L (1993) Differential signal transduction by five splice variants of the PACAP receptor. Nature 365:170–175

    Article  CAS  PubMed  Google Scholar 

  • Stroth N, Eiden LE (2010) Stress hormone synthesis in mouse hypothalamus and adrenal gland triggered by restraint is dependent on pituitary adenylate cyclase-activating polypeptide signaling. Neuroscience 165:1025–1030

    Article  CAS  PubMed  Google Scholar 

  • Vaudry D, Falluel-Morel A, Bourgault S, Basille M, Burel D, Wurtz O et al (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61:283–357

  • Wacker D, Stevens RC, Roth BL (2017) How ligands illuminate GPCR molecular pharmacology. Cell 170:414–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weinan E, Vanden-Eijnden E (2006) Towards a theory of transition paths. J Stat Phys 123:503–523

    Article  Google Scholar 

  • Wootten D, Miller LJ, Koole C, Christopoulos A, Sexton PM (2017) Allostery and biased agonism at class B G protein-coupled receptors. Chem Rev 117:111–138

    Article  CAS  PubMed  Google Scholar 

  • Yang L, Yang D, de Graaf C, Moeller A, West GM, Dharmarajan V, Wang C, Siu FY, Song G, Reedtz-Runge S, Pascal BD, Wu B, Potter CS, Zhou H, Griffin PR, Carragher B, Yang H, Wang MW, Stevens RC, Jiang H (2015) Conformational states of the full-length glucagon receptor. Nat Commun 6:7859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan S, Hu Z, Filipek S, Vogel H (2015) W246(6.48) opens a gate for a continuous intrinsic water pathway during activation of the adenosine A2A receptor. Angew Chem Int Ed Engl 54:556–559

    CAS  PubMed  Google Scholar 

  • Zhang D, Zhao Q, Wu B (2015) Structural studies of G protein-coupled receptors. Mol Cells 38:836–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang H et al (2018) Structure of the glucagon receptor in complex with a glucagon analogue. Nature 553:106–110

    Article  CAS  PubMed  Google Scholar 

  • Zhang H et al (2017a) Structure of the full-length glucagon class B G-protein-coupled receptor. Nature 546:259–264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Sun B, Feng D, Hu H, Chu M, Qu Q, Tarrasch JT, Li S, Sun Kobilka T, Kobilka BK, Skiniotis G (2017b) Cryo-EM structure of the activated GLP-1 receptor in complex with a G protein. Nature 546:248–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the UVM REACH grant for the support to this research. Computational resources were provided by Anton (PSC, NIH P41GM103712-S1), Stampede (XSEDE, NSF ACI-1053575), and Vermont Advanced Computing Core (VACC).

Author information

Authors and Affiliations

Authors

Contributions

J. L. designed the studies and C. L. performed the simulations and analyzed the data. C. L., J. L. and V. M. wrote the paper; all of the authors contributed insights and critical edits to the final manuscript.

Corresponding authors

Correspondence to Victor May or Jianing Li.

Ethics declarations

Conflict of Interest

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, C., May, V. & Li, J. PAC1 Receptors: Shapeshifters in Motion. J Mol Neurosci 68, 331–339 (2019). https://doi.org/10.1007/s12031-018-1132-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-018-1132-0

Keywords

Navigation