Skip to main content

Advertisement

Log in

Effect of Metformin on Adult Hippocampal Neurogenesis: Comparison with Donepezil and Links to Cognition

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Recent studies have uncovered evidence suggesting that interference with hippocampal adult neurogenesis contributes to neurodegeneration in Alzheimer’s disease (AD). Evidence supporting that AD is a metabolic disease with derangements in brain glucose utilization implies the use of anti-diabetics as an alternate therapeutic strategy. The present study drew comparison between the pro-neurogenic potential of metformin and donepezil in AlCl3-induced mouse model of neurodegeneration. Morris water maze task and subsequent immunohistochemical evaluation for NeuN was conducted. Expression of neurogenesis markers and hippocampal proteome analysis was determined by qRT-PCR and SDS-PAGE, respectively, followed by ESI-QTOFF MS/MS identification. The results demonstrated impaired spatial memory and differential expression of eight proteins in the AlCl3 group as compared to the controls. Interestingly, treatment with metformin normalized the proteome profile and expression levels of neurogenesis markers along with improvement in the spatial memory. Moreover, as compared to donepezil, metformin-treated mice exhibited an enhanced number of post-mitotic NeuN-positive neurons. It is suggested that underlying molecular mechanisms of metformin-mediated adult hippocampal neurogenesis may have implications in treatment of neurodegenerative disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abd-Elsameea AA, Moustaf AA, Mohamed AM (2014) Modulation of the oxidative stress by metformin in the cerebrum of rats exposed to global cerebral ischemia and ischemia/reperfusion. Eur Rev Med Pharmacol Sci 18:2387–2392

    CAS  PubMed  Google Scholar 

  • Alagiakrishnan K, Sankaralingam S, Ghosh M, Mereu L, Senior P (2013) Antidiabetic drugs and their potential role in treating mild cognitive impairment and Alzheimer’s disease. Discov Med 16:277–286

    PubMed  Google Scholar 

  • Arsenijevic Y, Weiss S, Schneider B, Aebischer P (2001) Insulin-like growth factor-I is necessary for neural stem cell proliferation and demonstrates distinct actions of epidermal growth factor and fibroblast growth factor-2. J Neurosci 21:7194–7202

    CAS  PubMed  Google Scholar 

  • Ashe KH, Zahs KR (2010) Probing the biology of Alzheimer’s disease in mice. Neuron 66:631–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Barria A, Malinow R (2005) NMDA receptor subunit composition controls synaptic plasticity by regulating binding to CaMKII. Neuron 48:289–301

    Article  CAS  PubMed  Google Scholar 

  • Boekhoorn K, Joels M, Lucassen PJ (2006) Increased proliferation reflects glial and vascular-associated changes, but not neurogenesis in the presenile Alzheimer hippocampus. Neurobiol Dis 24:1–14

    Article  CAS  PubMed  Google Scholar 

  • Bogen IL, Jensen V, Hvalby Ø, Walaas SI (2011) Glutamatergic neurotransmission in the synapsin I and II double knock-out mouse. Semin Cell Dev Biol 22:400–407

    Article  CAS  PubMed  Google Scholar 

  • Bromley-Brits K, Deng Y, Song W. (2011) Morris water maze test for learning and memory deficits in Alzheimer’s disease model mice. J Vis Exp: 2920.

  • Cantu D, Schaack J, Patel M (2009) Oxidative inactivation of mitochondrial aconitase results in iron and H2O2-mediated neurotoxicity in rat primary mesencephalic cultures. PLoS One 4:e7095

    Article  PubMed  PubMed Central  Google Scholar 

  • Correia SC, Santos RX, Perry G, Zhu X, Moreira PI, Smith MA (2011) Insulin-resistant brain state: the culprit in sporadic Alzheimer’s disease? Ageing Res Rev 10:264–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crews L, Masliah E (2010) Molecular mechanisms of neurodegeneration in Alzheimer’s disease. Hum Mol Genet 19:12–20

    Article  Google Scholar 

  • D’Hooge R, De Deyn PP (2001) Applications of the Morris water maze in the study of learning and memory. Brain Res Rev 36:60–90

    Article  PubMed  Google Scholar 

  • Deger JM, Gerson JE, Kayed R (2015) The interrelationship of proteasome impairment and oligomeric intermediates in neurodegeneration. Aging Cell 14:715–724

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DeKosky ST, Scheff SW (1990) Synapse loss in frontal cortex biopsies in Alzheimer’s disease: correlation with cognitive severity. Ann Neurol 27:457–464

    Article  CAS  PubMed  Google Scholar 

  • de la Monte SM (2012) Brain insulin resistance and deficiency as therapeutic targets in Alzheimer’s disease. Curr Alzheimer Res 9:35–66

    Article  PubMed  PubMed Central  Google Scholar 

  • de la Monte SM, Wands JR (2005) Review of insulin and insulin-like growth factor expression, signaling, and malfunction in the central nervous system: relevance to Alzheimer’s disease. J Alzheimers Dis 7:45–61

    Article  PubMed  Google Scholar 

  • Donovan MH, Yazdani U, Norris RD, Games D, German DC, Eisch AJ (2006) Decreased adult hippocampal neurogenesis in the PDAPP mouse model of Alzheimer’s disease. J Comp Neurol 495:70–83

    Article  PubMed  Google Scholar 

  • Duarte AI, Santos P, Oliveira CR, Santos MS, Rego AC (2008) Insulin neuroprotection against oxidative stress is mediated by Akt and GSK-3β signaling pathways and changes in protein expression. Biochim Biophys Acta 1783:994–1002

    Article  CAS  PubMed  Google Scholar 

  • Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R, Cooper GM, Segal RA, Kaplan DR, Greenberg ME (1997) Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275:661–665

    Article  CAS  PubMed  Google Scholar 

  • Enas KA (2010) Study of possible protective and therapeutic influence of coriander (Coriandrum sativum L.) against neurodegenerative disorders and Alzheimer’s disease induced by aluminum chloride in cerebral cortex of male albino rats. Nat Sci 8:202–213

    Google Scholar 

  • Ghosh T, Mustafa M, Kumar V, Datta SK, Bhatia MS, Sircar S, Banerjee BD (2012) A preliminary study on the influence of glutathione S transferase T1 (GSTT1) as a risk factor for late onset Alzheimer’s disease in north Indian population. Asian J Psychiatr 5:160–163

    Article  PubMed  Google Scholar 

  • Hwang YP, Jeong HG (2010) Metformin blocks migration and invasion of tumour cells by inhibition of matrix metalloproteinase-9 activation through a calcium and protein kinase Calpha-dependent pathway: phorbol-12-myristate-13-acetate-induced/extracellular signal-regulated kinase/activator protein-1. Br J Pharmacol 160:1195–1211

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hwang IK, Kim IY, Joo EJ, Shin JH, Choi JW, Won MH, Yoon YS, Seong JK (2010) Metformin normalizes type 2 diabetes-induced decrease in cell proliferation and neuroblast differentiation in the rat dentate gyrus. Neurochem Res 35(4):645–650

    Article  CAS  PubMed  Google Scholar 

  • Jin K, Peel AL, Mao XO, Xie L, Cottrell BA, Henshall DC, Greenberg DA (2004) Increased hippocampal neurogenesis in Alzheimer’s disease. Proc Natl Acad Sci U S A 101:343–347

    Article  CAS  PubMed  Google Scholar 

  • Kempermann G, Kuhn HG, Gage FH (1997) More hippocampal neurons in adult mice living in an enriched environment. Nature 386:493–495

    Article  CAS  PubMed  Google Scholar 

  • Kwon KJ, Kim MK, Lee EJ, Kim JN, Choi BR, Kim SY, Cho KS, Han JS, Kim HY, Shin CY, Han SH (2014) Effects of donepezil, an acetylcholinesterase inhibitor, on neurogenesis in a rat model of vascular dementia. J Neurol Sci 347:66–77

    Article  CAS  PubMed  Google Scholar 

  • Lester-Coll N, Rivera EJ, Soscia SJ, Doiron K, Wands JR, de la Monte SM (2006) Intracerebral streptozotocin model of type 3 diabetes: relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 9:13–33

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Rinne JO, Mosconi L, Pirraglia E, Rusinek H, DeSanti S, Kemppainen N, Någren K, Kim BC, Tsui W, de Leon MJ (2008) Regional analysis of FDG and PIB-PET images in normal aging, mild cognitive impairment, and Alzheimer’s disease. Eur J Nucl Med Mol Imaging 35:2169–2181

    Article  PubMed  PubMed Central  Google Scholar 

  • Raff MC, Whitmore AV, Finn JT (2002) Axonal self-destruction and neurodegeneration. Science 296:868–871

    Article  CAS  PubMed  Google Scholar 

  • Rani A, Prasad S (2015) A special extract of Bacopa monnieri (CDRI-08) restored memory in CoCl2-hypoxia mimetic mice is associated with upregulation of FMR-1 gene expression in hippocampus. Evid Based Complement Alternat Med 2015:347978

    Article  PubMed  PubMed Central  Google Scholar 

  • Rao MS, Shetty AK (2004) Efficacy of doublecortin as a marker to analyse the absolute number and dendritic growth of newly generated neurons in the adult dentate gyrus. Eur J Neurosci 19:234–246

    Article  PubMed  Google Scholar 

  • Rebai O, Djebli NE (2008) Chronic exposure to aluminum chloride in mice: exploratory behaviors and spatial learning. Adv Biol Res 2:26–33

    Google Scholar 

  • Scheff SW, Price DA (2001) Alzheimer’s disease-related synapse loss in the cingulate cortex. J Alzheimers Dis 3:495–505

    Article  PubMed  Google Scholar 

  • Selkoe DJ (2001) Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev 81:741–766

    CAS  PubMed  Google Scholar 

  • Serrano-Pozo A, Frosch MP, Masliah E, Hyman BT (2011) Neuropathological alterations in Alzheimer disease. Cold Spring Harb Perspect Med 1:a006189

    Article  PubMed  PubMed Central  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP (2014) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452

    PubMed  PubMed Central  Google Scholar 

  • Wallimann T, Tokarska-Schlattner M, Schlattner U (2011) The creatine kinase system and pleiotropic effects of creatine. Amino Acids 40:1271–1296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen PH, Hof PR, Chen X, Gluck K, Austin G, Younkin SG, Younkin LH, DeGasperi R, Gama Sosa MA, Robakis NK, Haroutunian V, Elder GA (2004) The presenilin-1 familial Alzheimer disease mutant P117L impairs neurogenesis in the hippocampus of adult mice. Exp Neurol 188:224–237

    Article  CAS  PubMed  Google Scholar 

  • Wyss M, Kaddurah-Daouk R (2000) Creatine and creatinine metabolism. Physiol Rev 80:1107–1213

    CAS  PubMed  Google Scholar 

  • Yu TS, Kim A, Kernie SG (2015) Donepezil rescues spatial learning and memory deficits following traumatic brain injury independent of its effects on neurogenesis. PLoS One 10(2):e0118793

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhao WQ, De Felice FG, Fernandez S, Chen H, Lambert MP, Quon MJ, Krafft GA, Klein WL (2008) Amyloid beta oligomers induce impairment of neuronal insulin receptors. FASEB J 22:246–260

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported through MS student’s research grant by National University of Sciences and Technology (NUST), Islamabad, Pakistan. We also thank Prof. Dr. Thomas C Nugent, Jacobs University, Bremen, Germany, for proof reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saadia Zahid.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflicts of interest.

Author’s Roles

*SZ, substantial contribution to conception and design of the study and finalization of the manuscript; SZ and IZ, MS/MS identification and data analysis. AJ and ZM, analysis of gene expression data, SNH, histological assessment; SA, all experimental work, analysis, data interpretation and drafting the article.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, S., Mahmood, Z., Javed, A. et al. Effect of Metformin on Adult Hippocampal Neurogenesis: Comparison with Donepezil and Links to Cognition. J Mol Neurosci 62, 88–98 (2017). https://doi.org/10.1007/s12031-017-0915-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-017-0915-z

Keywords

Navigation