Skip to main content

Advertisement

Log in

miRNA Expression Change in Dorsal Root Ganglia After Peripheral Nerve Injury

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The role of microRNAs (miRNAs) in the regulation of nerve injury-induced neuropathic pain is unclear. The aims of this study were to assess and compare miRNA expression profiles in dorsal root ganglia (DRG) following three different kinds of peripheral nerve injury, including spinal nerve ligation (SNL), dorsal root transection (DRT), and ventral root transection (VRT), in Sprague–Dawley rats. Responses to thermal and mechanical stimuli were measured preoperatively and on postoperative days (PODs) 1, 4, and 7. A miRNA microarray analysis was used to detect the miRNA expression profiles in injured L5 DRG from SNL, DRT, and VRT on POD 7. Validation of miRNA expression was performed by qPCR and in situ hybridization. Rats receiving SNL displayed significantly higher mechanical hypersensitivity, but those receiving DRT developed higher thermal hypersensitivity. The number of miRNAs that were significantly upregulated in L5 DRG was 49 (7.2%), 25 (3.7%), and 146 (21.5%) following SNL, DRT, and VRT, respectively. On the other hand, 35 (5.1%) miRNAs were significantly downregulated in the SNL group, 21 (3.1%) miRNAs in the DRT group, and 41 (6.0%) miRNAs in the VRT group. Of the four miRNAs that were mutually aberrant in all three models, two were significantly upregulated (twofold), miR-21 and miR-31, and two were significantly downregulated, miR-668 and miR-672. Using in situ hybridization, miRNA-21, miRNA-31, miRNA-668, and miRNA-672 were found to localize to neurons in the DRG. Collectively, the mutual abnormal miRNA expression of miR-21, miR-31, miR-668, and miR-677 implied that these miRNAs may be therapeutic targets for alleviating multiple forms of neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aldrich BT, Frakes EP, Kasuya J, Hammond DL, Kitamoto T (2009) Changes in expression of sensory organ-specific microRNAs in rat dorsal root ganglia in association with mechanical hypersensitivity induced by spinal nerve ligation. Neuroscience 164:711–723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baek D, Villén J, Shin C, Camargo FD, Gygi SP, Bartel DP (2008) The impact of microRNAs on protein output. Nature 455:64–71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bali KK, Kuner R (2014) Noncoding RNAs: key molecules in understanding and treating pain. Trends Mol Med 20:437–448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buller B, Liu X, Wang X, Zhang RL, Zhang L, Hozeska-Solgot A, Chopp M, Zhang ZG (2010) MicroRNA-21 protects neurons from ischemic death. FEBS J 277:4299–4307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell JN, Meyer RA (2006) Mechanisms of neuropathic pain. Neuron 52:77–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan JA, Krichevsky AM, Kosik KS (2005) MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 65:6029–6033

    Article  CAS  PubMed  Google Scholar 

  • Colburn RW, Rickman AJ, DeLeo JA (1999) The effect of site and type of nerve injury on spinal glial activation and neuropathic pain behavior. Exp Neurol 157:289–304

    Article  CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Hori N, Narita M, Yamashita A, Horiuchi H, Hamada Y, Kondo T, Watanabe M, Igarashi K, Kawata M, Shibasaki M, Yamazaki M, Kuzumaki N, Inada E, Ochiya T, Iseki M, Mori T, Narita M (2016) Changes in the expression of IL-6-mediated MicroRNAs in the dorsal root ganglion under neuropathic pain in mice. Synapse 70:317–324

    Article  CAS  PubMed  Google Scholar 

  • Kim SH, Chung JM (1992) An experimental model for peripheral neuropathy produced by segmental spinal nerve ligation in the rat. Pain 50:355–363

    Article  CAS  PubMed  Google Scholar 

  • Kirita T, Takebayashi T, Mizuno S, Takeuchi H, Kobayashi T, Fukao M, Yamashita T, Tohse N (2007) Electrophysiologic changes in dorsal root ganglion neurons and behavioral changes in a lumbar radiculopathy model. Spine (Phila Pa 1976) 32:E65–E72

    Article  Google Scholar 

  • Krichevsky AM, Gabriely G (2009) miR-21: a small multi-faceted RNA. J Cell Mol Med 13:39–53

    Article  CAS  PubMed  Google Scholar 

  • Kusuda R, Cadetti F, Ravanelli MI, Sousa TA, Zanon S, De Lucca FL, Lucas G (2011) Differential expression of microRNAs in mouse pain models. Mol Pain 7:17

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laurila EM, Kallioniemi A (2013) The diverse role of miR-31 in regulating cancer associated phenotypes. Genes Chromosomes Cancer 52:1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Li L, Xian CJ, Zhong JH, Zhou XF (2002) Effect of lumbar 5 ventral root transection on pain behaviors: a novel rat model for neuropathic pain without axotomy of primary sensory neurons. Exp Neurol 175:23–34

    Article  PubMed  Google Scholar 

  • Li N, Lim G, Chen L, McCabe MF, Kim H, Zhang S, Mao J (2013) Spinal expression of hippo signaling components YAP and TAZ following peripheral nerve injury in rats. Brain Res 1535:137–147

    Article  CAS  PubMed  Google Scholar 

  • Miyakawa T, Terashima Y, Takebayashi T, Tanimoto K, Iwase T, Ogon I, Kobayashi T, Tohse N, Yamashita T (2014) Transient receptor potential ankyrin 1 in spinal cord dorsal horn is involved in neuropathic pain in nerve root constriction rats. Mol Pain 10:58

    Article  PubMed  PubMed Central  Google Scholar 

  • Neumann E, Hermanns H, Barthel F, Werdehausen R, Brandenburger T (2015) Expression changes of microRNA-1 and its targets connexin 43 and brain-derived neurotrophic factor in the peripheral nervous system of chronic neuropathic rats. Mol Pain 11:39

    Article  PubMed  PubMed Central  Google Scholar 

  • Norcini M, Sideris A, Martin Hernandez LA, Zhang J, Blanck TJ, Recio-Pinto E (2014) An approach to identify microRNAs involved in neuropathic pain following a peripheral nerve injury. Front Neurosci 8:266

    Article  PubMed  PubMed Central  Google Scholar 

  • Obata K, Yamanaka H, Dai Y, Mizushima T, Fukuoka T, Tokunaga A, Yoshikawa H, Noguchi K (2004) Contribution of degeneration of motor and sensory fibers to pain behavior and the changes in neurotrophic factors in rat dorsal root ganglion. Exp Neurol 188:149–160

    Article  CAS  PubMed  Google Scholar 

  • Omana-Zapata I, Khabbaz MA, Hunter JC, Clarke DE, Bley KR (1997) Tetrodotoxin inhibits neuropathic ectopic activity in neuromas, dorsal root ganglia and dorsal horn neurons. Pain 72:41–49

    Article  CAS  PubMed  Google Scholar 

  • Pollema-Mays SL, Centeno MV, Apkarian AV, Martina M (2014) Expression of DNA methyltransferases in adult dorsal root ganglia is cell-type specific and up regulated in a rodent model of neuropathic pain. Front Cell Neurosci 8:217

    Article  PubMed  PubMed Central  Google Scholar 

  • Rau CS, Jeng JC, Jeng SF, Lu TH, Chen YC, Liliang PC, Wu CJ, Lin CJ, Hsieh CH (2010) Entrapment neuropathy results in different microRNA expression patterns from denervation injury in rats. BMC Musculoskelet Disord 11:181

    Article  PubMed  PubMed Central  Google Scholar 

  • Saba R, Schratt GM (2010) MicroRNAs in neuronal development, function and dysfunction. Brain Res 1338:3–13

    Article  CAS  PubMed  Google Scholar 

  • Sakai A, Suzuki H (2013) Nerve injury-induced upregulation of miR-21 in the primary sensory neurons contributes to neuropathic pain in rats. Biochem Biophys Res Commun 435:176–181

    Article  CAS  PubMed  Google Scholar 

  • Sapunar D, Kostic S, Banozic A, Puljak L (2012) Dorsal root ganglion—a potential new therapeutic target for neuropathic pain. J Pain Res 5:31–38

    Article  PubMed  PubMed Central  Google Scholar 

  • Selbach M, Schwanhäusser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455:58–63

    Article  CAS  PubMed  Google Scholar 

  • Shin KH, Pucar A, Kim RH, Bae SD, Chen W, Kang MK, Park NH (2011) Identification of senescence-inducing microRNAs in normal human keratinocytes. Int J Oncol 39:1205–1211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stefani G, Slack FJ (2008) Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 9:219–230

    Article  CAS  PubMed  Google Scholar 

  • Stein C, Clark JD, Oh U, Vasko MR, Wilcox GL, Overland AC, Vanderah TW, Spencer RH (2009) Peripheral mechanisms of pain and analgesia. Brain Res Rev 60:90–113

    Article  CAS  PubMed  Google Scholar 

  • Strickland IT, Richards L, Holmes FE, Wynick D, Uney JB, Wong LF (2011) Axotomy-induced miR-21 promotes axon growth in adult dorsal root ganglion neurons. PLoS One 6:e23423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suárez Y, Sessa WC (2009) MicroRNAs as novel regulators of angiogenesis. Circ Res 104:442–454

    Article  PubMed  PubMed Central  Google Scholar 

  • Schmittgen TD (2010) miR-31: a master regulator of metastasis? Future Oncol 6:17–20

    Article  CAS  PubMed  Google Scholar 

  • Nilsen TW (2007) Mechanisms of microRNA-mediated gene regulation in animal cells. Trends Genet 23:243–249

    Article  CAS  PubMed  Google Scholar 

  • Urbich C, Kuehbacher A, Dimmeler S (2008) Role of microRNAs in vascular diseases, inflammation, and angiogenesis. Cardiovasc Res 79:581–588

    Article  CAS  PubMed  Google Scholar 

  • Valastyan S, Reinhardt F, Benaich N, Calogrias D, Szász AM, Wang ZC, Brock JE, Richardson AL, Weinberg RA (2009) A pleiotropically acting microRNA, miR-31, inhibits breast cancer metastasis. Cell 137:1032–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang CJ, Zhou ZG, Wang L, Yang L, Zhou B, Gu J, Chen HY, Sun XF (2009) Clinicopathological significance of microRNA-31, -143 and -145 expression in colorectal cancer. Dis Markers 26:27–34

    Article  PubMed  PubMed Central  Google Scholar 

  • Woolf CJ, Mannion RJ (1999) Neuropathic pain: aetiology, symptoms, mechanisms, and management. Lancet 353:1959–1964

    Article  CAS  PubMed  Google Scholar 

  • Xiao HS, Huang QH, Zhang FX, Bao L, Lu YJ, Guo C, Yang L, Huang WJ, Fu G, Xu SH, Cheng XP, Yan Q, Zhu ZD, Zhang X, Chen Z, Han ZG, Zhang X (2002) Identification of gene expression profile of dorsal root ganglion in the rat peripheral axotomy model of neuropathic pain. Proc Natl Acad Sci U S A 2002 99:8360–8365.

  • Xu Y, Zhang X, Pu S, Wu J, Lv Y, Du D (2014) Circulating microRNA expression profile: a novel potential predictor for chronic nervous lesions. Acta Biochim Biophys Sin Shanghai 46:942–949

    Article  CAS  PubMed  Google Scholar 

  • Yang MH, Yu J, Chen N, Wang XY, Liu XY, Wang S, Ding YQ (2013) Elevated microRNA-31 expression regulates colorectal cancer progression by repressing its target gene SATB2. PLoS One 8:e85353

    Article  PubMed  PubMed Central  Google Scholar 

  • Yu B, Zhou S, Qian T, Wang Y, Ding F, Gu X (2011) Altered microRNA expression following sciatic nerve resection in dorsal root ganglia of rats. Acta Biochim Biophys Sin Shanghai 43:909–915

    Article  CAS  PubMed  Google Scholar 

  • Yuchuan H, Ya D, Jie Z, Jingqiu C, Yanrong L, Dongliang L, Changguo W, Kuoyan M, Guangneng L, Fang X, Lanlan T, Bo Q (2014) Circulating miRNAs might be promising biomarkers to reflect the dynamic pathological changes in smoking-related interstitial fibrosis. Toxicol Ind Health 30:182–191

    Article  PubMed  Google Scholar 

  • Zhang JG, Wang JJ, Zhao F, Liu Q, Jiang K, Yang GH (2010b) MicroRNA-21 (miR-21) represses tumor suppressor PTEN and promotes growth and invasion in non-small cell lung cancer (NSCLC). Clin Chim Acta 411:846–852

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Guo J, Li D, Xiao B, Miao Y, Jiang Z, Zhuo H (2010a) Down-regulation of miR-31 expression in gastric cancer tissues and its clinical significance. Med Oncol 27:685–689

    Article  CAS  PubMed  Google Scholar 

  • Zhao J, Lee MC, Momin A, Cendan CM, Shepherd ST, Baker MD, Asante C, Bee L, Bethry A, Perkins JR, Nassar MA, Abrahamsen B, Dickenson A, Cobb BS, Merkenschlager M, Wood JN (2010) Small RNAs control sodium channel expression, nociceptor excitability, and pain thresholds. J Neurosci 30:10860–10871

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Zhang S, Wang Y, Yi S, Zhao L, Tang X, Yu B, Gu X, Ding F (2015) MiR-21 and miR-222 inhibit apoptosis of adult dorsal root ganglion neurons by repressing TIMP3 following sciatic nerve injury. Neurosci Lett 586:43–49

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lin-Li Chang or Kuang-I Cheng.

Ethics declarations

All experimental procedures were approved by the Kaohsiung Institutional Animal Care and Use Committee (Approval No. 100050).

Funding

The work was supported by the Ministry of Science and Technology (NSC102-2314-B-037-029, 103-2314-B-037-042, 104-2314-B0037-022) and the Kaohsiung Medical University Hospital (KMUH101-1M53, 102-2R60, 103-3R66, 104-4R70).

Competing Interests

The authors declare that they have no conflict of interest.

Disclosures

No

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chang, HL., Wang, HC., Chunag, YT. et al. miRNA Expression Change in Dorsal Root Ganglia After Peripheral Nerve Injury. J Mol Neurosci 61, 169–177 (2017). https://doi.org/10.1007/s12031-016-0876-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-016-0876-7

Keywords

Navigation