Skip to main content

Advertisement

Log in

Acute Response of the Hippocampal Transcriptome Following Mild Traumatic Brain Injury After Controlled Cortical Impact in the Rat

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

We have previously demonstrated that mild controlled cortical impact (mCCI) injury to rat cortex causes indirect, concussive injury to underlying hippocampus and other brain regions, providing a reproducible model for mild traumatic brain injury (mTBI) and its neurochemical, synaptic, and behavioral sequelae. Here, we extend a preliminary gene expression study of the hippocampus-specific events occurring after mCCI and identify 193 transcripts significantly upregulated, and 21 transcripts significantly downregulated, 24 h after mCCI. Fifty-three percent of genes altered by mCCI within 24 h of injury are predicted to be expressed only in the non-neuronal/glial cellular compartment, with only 13 % predicted to be expressed only in neurons. The set of upregulated genes following mCCI was interrogated using Ingenuity Pathway Analysis (IPA) augmented with manual curation of the literature (190 transcripts accepted for analysis), revealing a core group of 15 first messengers, mostly inflammatory cytokines, predicted to account for >99 % of the transcript upregulation occurring 24 h after mCCI. Convergent analysis of predicted transcription factors (TFs) regulating the mCCI target genes, carried out in IPA relative to the entire Affymetrix-curated transcriptome, revealed a high concordance with TFs regulated by the cohort of 15 cytokines/cytokine-like messengers independently accounting for upregulation of the mCCI transcript cohort. TFs predicted to regulate transcription of the 193-gene mCCI cohort also displayed a high degree of overlap with TFs predicted to regulate glia-, rather than neuron-specific genes in cortical tissue. We conclude that mCCI predominantly affects transcription of non-neuronal genes within the first 24 h after insult. This finding suggests that early non-neuronal events trigger later permanent neuronal changes after mTBI, and that early intervention after mTBI could potentially affect the neurochemical cascade leading to later reported synaptic and behavioral dysfunction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Downregulated genes were only sparsely represented in the overall first-messenger IPA analysis, and were therefore not considered further for correlation of first-messenger mCCI-response genes and first-messenger-related transcription factors.

Abbreviations

CCI:

Controlled cortical impact

mCCI:

Mild controlled cortical injury

mTBI:

Mild traumatic brain injury

IPA:

Ingenuity Pathway Analysis

References

  • Ait-Ali D, Samal B, Mustafa T, Eiden LE (2010) Neuropeptides, growth factors and cytokines: a cohort of informational molecules whose expression is up-regulated by the stress-associated slow transmitter PACAP in chromaffin cells. Cell Mol Neurobiol 30:1441–1449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Almeida-Suhett CP, Li Z, Marini AM, Braga MF, Eiden LE (2014a) Temporal course of changes in gene expression suggests a cytokine-related mechanism for long-term hippocampal alteration after controlled cortical impact. J Neurotrauma 31:683–690

    Article  PubMed  PubMed Central  Google Scholar 

  • Almeida-Suhett CP, Prager EM, Pidoplichko V, Figueiredo TH, Marini AM, Li Z, Eiden LE, Braga MF (2014b) Reduced GABAergic inhibition in the basolateral amygdala and the development of anxiety-like behaviors after mild traumatic brain injury. PLoS One 9, e102627

    Article  PubMed  PubMed Central  Google Scholar 

  • Ameida-Suhett CP, Prager EM, Pidoplichko V, Figueiredo TH, Marini AM, Li Z, Eiden LE, Braga MFM (2015) GABAergic interneuronal loss and reduced inhibitory synaptic transmission in the hippocampal CA1 region after mild traumatic brain injury. Exp Neurol 273:11–23

  • Baratz R, Tweedie D, Rubovitch V, Luo W, Yoon JS, Hoffer BJ, Greig NH, Pick CG (2011) Tumor necrosis factor-alpha synthesis inhibitor, 3,6′-dithiothalidomide, reverses behavioral impairments induced by minimal traumatic brain injury in mice. J Neurochem 118:1032–1042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Samal B, Hamelink CR, Xiang CC, Chen Y, Chen M, Vaudry D, Brownstein MJ, Hallenbeck JM, Eiden LE (2006) Neuroprotection by endogenous and exogenous PACAP following stroke. Regul Pept 137:4–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Depboylu C, Reinhart TA, Takikawa O, Imai Y, Maeda H, Mitsuya H, Rausch D, Eiden LE, Weihe E (2004) Brain virus burden and indoleamine-2,3-dioxygenase expression during lentiviral infection of rhesus monkey are concomitantly lowered by 6-chloro-2′,3′-dideoxyguanosine. Eur J Neurosci 19:2997–3005

    Article  PubMed  Google Scholar 

  • Depboylu C, Weihe E, Eiden LE (2012) Lentiviral infection of rhesus macaques causes long-term injury to cortical and hippocampal projections of prostaglandin-expressing cholinergic basal forebrain neurons. J Neuropathol Exp Neurol 71:15–27

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon CE, Lyeth BG, Povlishock JT, Findling RL, Hamm RJ, Marmarou A, Young HF, Hayes RL (1987) A fluid percussion model of experimental brain injury in the rat. J Neurosurg 67:110–119

    Article  CAS  PubMed  Google Scholar 

  • Dixon CE, Clifton GL, Lighthall JW, Yaghmai AA, Hayes RL (1991) A controlled cortical impact model of traumatic brain injury in the rat. J Neurosci Methods 39:253–262

    Article  CAS  PubMed  Google Scholar 

  • Eiden LE, Samal B, Gerdin MJ, Mustafa T, Stroth N (2008) Discovery of PACAP-related genes through microarray analyses in cell culture and in vivo. Ann N Y Acad Sci 1144:6–20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fahlenkamp AV, Coburn M, Czaplik M, Ryang YM, Kipp M, Rossaint R, Beyer C (2011) Expression analysis of the early chemokine response 4 h after in vitro traumatic brain injury. Inflamm Res 60:379–387

    Article  CAS  PubMed  Google Scholar 

  • Goldstein LE, Fisher AM, Tagge CA, Zhang XL, Velisek L, Sullivan JA, Upreti C, Kracht JM, Ericsson M, Wojnarowicz MW, Goletiani CJ, Maglakelidze GM, Casey N, Moncaster JA, Minaeva O, Moir RD, Nowinski CJ, Stern RA, Cantu RC, Geiling J, Blusztajn JK, Wolozin BL, Ikezu T, Stein TD, Budson AE, Kowall NW, Chargin D, Sharon A, Saman S, Hall GF, Moss WC, Cleveland RO, Tanzi RE, Stanton PK, McKee AC (2012) Chronic traumatic encephalopathy in blast-exposed military veterans and a blast neurotrauma mouse model. Sci Transl Med 4:134ra160

    Google Scholar 

  • Harvey AG, Bryant RA (2000) Two-year prospective evaluation of the relationship between acute stress disorder and posttraumatic stress disorder following mild traumatic brain injury. Am J Psychiatry 157:626–628

    Article  CAS  PubMed  Google Scholar 

  • Hoge CW, McGurk D, Thomas JL, Cox AL, Engel CC, Castro CA (2008) Mild traumatic brain injury in U.S. Soldiers returning from Iraq. N Engl J Med 358:453–463

    Article  CAS  PubMed  Google Scholar 

  • Hu Z, Yu D, Almeida-Suhett C, Tu K, Marini AM, Eiden L, Braga MF, Zhu J, Li Z (2012) Expression of miRNAs and their cooperative regulation of the pathophysiology in traumatic brain injury. PLoS One 7, e39357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kovesdi E, Tamas A, Reglodi D, Farkas O, Pal J, Toth G, Bukovics P, Doczi T, Buki A (2008) Posttraumatic administration of pituitary adenylate cyclase activating polypeptide in central fluid percussion injury in rats. Neurotox Res 13:71–78

    Article  CAS  PubMed  Google Scholar 

  • Kozlenkov A, Roussos P, Timashpolsky A, Barbu M, Rudchenko S, Bibikova M, Klotzle B, Byne W, Lyddon R, Di Narzo AF, Hurd YL, Koonin EV, Dracheva S (2014) Differences in DNA methylation between human neuronal and glial cells are concentrated in enhancers and non-CpG sites. Nucleic Acids Res 42:109–127

    Article  CAS  PubMed  Google Scholar 

  • Leker RR, Shohami E (2002) Cerebral ischemia and trauma-different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Res Brain Res Rev 39:55–73

    Article  PubMed  Google Scholar 

  • Leker RR, Shohami E, Constantini S (2002) Experimental models of head trauma. Acta Neurochir Suppl 83:49–54

    CAS  PubMed  Google Scholar 

  • McCabe JT, Moratz C, Liu Y, Burton E, Morgan A, Budinich C, Lowe D, Rosenberger J, Chen H, Liu J, Myers M (2014) Application of high-intensity focused ultrasound to the study of mild traumatic brain injury. Ultrasound Med Biol 40:965–978

    Article  PubMed  Google Scholar 

  • Rubovitch V, Ten-Bosch M, Zohar O, Harrison CR, Tempel-Brami C, Stein E, Hoffer BJ, Balaban CD, Schreiber S, Chiu WT, Pick CG (2011) A mouse model of blast-induced mild traumatic brain injury. Exp Neurol 232:280–289

    Article  PubMed  PubMed Central  Google Scholar 

  • Samal BB, Eiden LE (2008) pathFinder: a static network analysis tool for pharmacological analysis of signal transduction pathways. Sci Signal 1:pt4

    Article  PubMed  PubMed Central  Google Scholar 

  • Samal B, Gerdin MJ, Huddleston D, Hsu CM, Elkahloun AG, Stroth N, Hamelink C, Eiden LE (2007) Meta-analysis of microarray-derived data from PACAP-deficient adrenal gland in vivo and PACAP-treated chromaffin cells identifies distinct classes of PACAP-regulated genes. Peptides 28:1871–1882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serova LI, Tillinger A, Alaluf LG, Laukova M, Keegan K, Sabban EL (2013) Single intranasal neuropeptide Y infusion attenuates development of PTSD-like symptoms to traumatic stress in rats. Neuroscience 236:298–312

    Article  CAS  PubMed  Google Scholar 

  • Signoretti S, Vagnozzi R, Tavazzi B, Lazzarino G (2010) Biochemical and neurochemical sequelae following mild traumatic brain injury: summary of experimental data and clinical implications. Neurosurg Focus 29, E1

    Article  PubMed  Google Scholar 

  • Tamas A, Zsombok A, Farkas O, Reglodi D, Pal J, Buki A, Lengvari I, Povlishock JT, Doczi T (2006) Postinjury administration of pituitary adenylate cyclase activating polypeptide (PACAP) attenuates traumatically induced axonal injury in rats. J Neurotrauma 23:686–695

    Article  PubMed  Google Scholar 

  • Tweedie D, Milman A, Holloway HW, Li Y, Harvey BK, Shen H, Pistell PJ, Lahiri DK, Hoffer BJ, Wang Y, Pick CG, Greig NH (2007) Apoptotic and behavioral sequelae of mild brain trauma in mice. J Neurosci Res 85:805–815

    Article  CAS  PubMed  Google Scholar 

  • Vos PE, Battistin L, Birbamer G, Gerstenbrand F, Potapov A, Prevec T, Stepan Ch A, Traubner P, Twijnstra A, Vecsei L, von Wild K (2002) EFNS guideline on mild traumatic brain injury: report of an EFNS task force. Eur J Neurol 9:207–219

    Article  CAS  PubMed  Google Scholar 

  • Weihe E, Nohr D, Sharer L, Murray E, Rausch D, Eiden L (1993) Cortical astrocytosis in juvenile rhesus monkeys infected with simian immunodeficiency virus. NeuroReport 4:263–266

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Chang-Mei Hsu for expert technical assistance in preparation of RNA for microarray and qRT-PCR analysis. This work was supported by the NIMH Intramural Research Program Project Z01 MH002386-22.

Conflict of Interest

The authors have nothing to disclose.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee E. Eiden.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samal, B.B., Waites, C.K., Almeida-Suhett, C. et al. Acute Response of the Hippocampal Transcriptome Following Mild Traumatic Brain Injury After Controlled Cortical Impact in the Rat. J Mol Neurosci 57, 282–303 (2015). https://doi.org/10.1007/s12031-015-0626-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0626-2

Keywords

Navigation