Skip to main content

Advertisement

Log in

Extracellular ATP Selectively Upregulates Ecto-Nucleoside Triphosphate Diphosphohydrolase 2 and Ecto-5′-Nucleotidase by Rat Cortical Astrocytes In Vitro

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Extracellular ATP (eATP) acts as a danger-associated molecular pattern which induces reactive response of astrocytes after brain insult, including morphological remodeling of astrocytes, proliferation, chemotaxis, and release of proinflammatory cytokines. The responses induced by eATP are under control of ecto-nucleotidases, which catalyze sequential hydrolysis of ATP to adenosine. In the mammalian brain, ecto-nucleotidases comprise three enzyme families: ecto-nucleoside triphosphate diphosphohydrolases 1–3 (NTPDase1–3), ecto-nucleotide pyrophosphatase/phospodiesterases 1–3 (NPP1–3), and ecto-5′-nucleotidase (eN), which crucially determine ATP/adenosine ratio in the pericellular milieu. Altered expression of ecto-nucleotidases has been demonstrated in several experimental models of human brain dysfunctions. In the present study, we have explored the pattern of NTPDase1–3, NPP1–3, and eN expression by cultured cortical astrocytes challenged with 1 mmol/L ATP (eATP). At the transcriptional level, eATP upregulated expression of NTPDase1, NTPDase2, NPP2, and eN, while, at translational and functional levels, these were paralleled only by the induction of NTPDase2 and eN. Additionally, eATP altered membrane topology of eN, from clusters localized in membrane domains to continuous distribution along the cell membrane. Our results suggest that eATP, by upregulating NTPDase2 and eN and altering the enzyme membrane topology, affects local kinetics of ATP metabolism and signal transduction that may have important roles in the process related to inflammation and reactive gliosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig 3
Fig. 4

Similar content being viewed by others

References

  • Abbracchio MP, Burnstock G, Boeynaems JM et al (2006) International Union of Pharmacology LVIII. Update on the P2Y G protein-coupled nucleotide receptors. From molecular mechanisms and pathophysiology to therapy. Pharmacol Rev 58:281–341

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Antonioli L, Pacher P, Vizi S, Haskó G (2013) CD39 and CD73 in immunity and inflammation. Trends Mol Med19:355–367

  • Bjelobaba I, Parabucki A, Lavrnja I et al (2011) Dynamic changes in the expression pattern of ecto-5′-nucleotidase in the rat model of cortical stab injury. J Neurosci Res 89:862–873

    Article  CAS  PubMed  Google Scholar 

  • Boeynaems JM, Communi D (2006) Modulation of inflammation by extracellular nucleotides. J Invest Dermatol 126:943–944

    Article  CAS  PubMed  Google Scholar 

  • Bollen M, Gijsbers R, Ceulemans H, Stalmans W, Stefan C (2000) Nucleotide pyrophosphatase/phosphodiesterase on the move. Crit Rev Biochem Mol Biol 35:393–432

    Article  CAS  PubMed  Google Scholar 

  • Bours MJ (2006) Adenosine 5’-triphosphate and adenosine as endogenous signaling molecules in immunity and inflammation. Pharmacol Ther 112:358–404

    Article  CAS  PubMed  Google Scholar 

  • Bours MJ, Dagnelie PC, Giuliani AL, Wesselius A, Di Virgilio F (2011) P2 receptors and extracellular ATP: a novel homeostatic pathway in inflammation. Front Biosci (Schol Ed) 3:1443–1456

    Article  Google Scholar 

  • Braun A, Dang J, Johann S, Beyer C, Kipp M (2009) Selective regulation of growth factor expression in cultured cortical astrocytes by neuro-pathological toxins. Neurochem Int 55:610–618

    Article  CAS  PubMed  Google Scholar 

  • Braun N, Zhu Y, Krieglstein J, Culmsee C, Zimmermann H (1998) Upregulation of the enzyme chain hydrolyzing extracellular ATP after transient forebrain ischemia in the rat. J Neurosci 18:4891–4900

    CAS  PubMed  Google Scholar 

  • Brisevac D, Bjelobaba I, Bajic A et al (2012) Regulation of ecto-5'-nucleotidase (CD73) in cultured cortical astrocytes by different inflammatory factors. Neurochem Int 61:681–688

    Article  CAS  PubMed  Google Scholar 

  • Brisevac D, Bajic A, Bjelobaba I et al (2013) Expression of ecto-nucleoside triphosphate diphosphohydrolase1-3 (NTPDase1‒3) by cortical astrocytes after exposure to pro-inflammatory factors in vitro. J Mol Neurosci 51:871–879

    Article  CAS  PubMed  Google Scholar 

  • Burnstock G (2006) Purinergic signalling. Br J Physiol 147:S172–S181

    CAS  Google Scholar 

  • Cahill CM, Rogers JT (2008) Interleukin (IL) 1beta induction of IL-6 is mediated by a novel phosphatidylinositol 3-kinase-dependent AKT/IkappaB kinase alpha pathway targeting activator protein-1. J Biol Chem 283:25900–25912

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chadwick BP, Frischauf AM (1997) Cloning and mapping of a human and mouse gene with homology to ecto-ATPase genes. Mamm Genome 8:668–672

    Article  CAS  PubMed  Google Scholar 

  • Chakraborty S, Kaushik DK, Gupta M, Basu A (2010) Inflammasome signaling at the heart of central nervous system pathology. J Neurosci Res 88:1615–1631

    CAS  PubMed  Google Scholar 

  • Chen Y, Thelin WR, Yang B, Milgram SL, Jacobson K (2006) Transient anchorage of cross-linked glycosyl-phosphatidylinositol-anchored proteins depends on cholesterol, Src family kinases, caveolin, and phosphoinositides. J Cell Biol 175:169–178

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ciccarelli R, Di Iorio P, Ballerini P et al (1994) Effects of exogenous ATP and related analogues on the proliferation rate of dissociated primary cultures of rat astrocytes. J Neurosci Res 39:556–566

    Article  CAS  PubMed  Google Scholar 

  • Colgan SP, Eltzschig HK, Eckle T, Thompson LF (2006) Physiological roles for ecto-5′-nucleotidase (CD73). Purinergic Signal 2:351–360

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • D’Ambrosi N, Volonté C (2013) Metabotropic purinergic receptors in lipid membrane microdomains. Curr Med Chem 20:56–63

    Article  PubMed  Google Scholar 

  • Dinarello CA (2009) Immunological and inflammatory functions of the interleukin-1 family. Annu Rev Immunol 27:519–550

    Article  CAS  PubMed  Google Scholar 

  • Di Virgilio F, Boeynaems JM, Robson SC (2009) Extracellular nucleotides as negative modulators of immunity. Curr Opin Pharmacol 9:507–513

    Article  PubMed Central  PubMed  Google Scholar 

  • Di Virgilio F (2007) Liaisons dangereuses: P2X(7) and the inflammasome. Trends Pharmacol Sci 28:465–472

    Article  PubMed  Google Scholar 

  • Dunn SL, Young EA, Hall MD, McNulty S (2002) Activation of astrocyte intracellular signaling pathways by interleukin-1 in rat primary striatal cultures. Glia 37:31–42

    Article  PubMed  Google Scholar 

  • Eltzschig HK, Sitkovsky MV, Robson SC (2012) Purinergic signaling during inflammation. N Engl J Med 367:2322–2333

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farina C, Aloisi F, Meinl E (2007) Astrocytes are active players in cerebral innate immunity. Trends Immunol 28:138–145

    Article  CAS  PubMed  Google Scholar 

  • Fiebich BL, Akter S, Akundi RS (2014) The two-hit hypothesis for neuroinflammation: role of exogenous ATP in modulating inflammation in the brain. Front Cell Neurosci 8:1–11

    Article  Google Scholar 

  • Franke H, Grummich B, Härtig W et al (2006) Changes in purinergic signaling after cerebral injury–involvement of glutamatergic mechanisms? Int J Dev Neurosci 24:123–132

    Article  CAS  PubMed  Google Scholar 

  • Franke H, Verkhratsky A, Burnstock G, Illes P (2012) Pathophysiology of astroglial purinergic signalling. Purinergic Signal 8:629–657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gandelman M, Peluffo H, Beckman JS, Cassina P, Barbeito L (2010) Extracellular ATP and the P2X7 receptor in astrocyte-mediated motor neuron death: implications for amyotrophic lateral sclerosis. J Neuroinflammation 7:33

    Article  PubMed Central  PubMed  Google Scholar 

  • Garcia-Marcos M, Dehaye JP, Marino A (2009) Membrane compartments and purinergic signalling: the role of plasma membrane microdomains in the modulation of P2XR-mediated signalling. FEBS J 276:330–340

    Article  CAS  PubMed  Google Scholar 

  • Gross O, Thomas CJ, Guarda G, Tschopp J (2011) The inflammasome: an integrated view. Immunol Rev 243:136–151

    Article  CAS  PubMed  Google Scholar 

  • Heine P, Braun N, Sévigny J, Robson SC, Servos J, Zimmermann H (2001) The C-terminal cysteinerich region dictates specific catalytic properties in chimeras of the ectonucleotidases NTPDase1 and NTPDase2. Eur J Biochem 268:364–73

  • Herx LM, Yong VW (2001) Interleukin-1 beta is required for the early evolution of reactive astrogliosis following CNS lesion. J Neuropathol Exp Neurol 60:961–971

    CAS  PubMed  Google Scholar 

  • Hoelzinger DB, Nakada M, Demuth T, Rosensteel T, Reavie LB, Berens ME (2008) Autotaxin: a secreted autocrine/paracrine factor that promotes glioma invasion. J Neurooncol 86:297–309

    Article  CAS  PubMed  Google Scholar 

  • John GR, Chen L, Rivieccio MA, Melendez-Vasquez CV, Hartley A, Brosnan CF (2004) Interleukin-1beta induces a reactive astroglial phenotype via deactivation of the Rho GTPase-Rock axis. J Neurosci 24:2837–2845

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Min KJ, Seol W, Jou I, Joe EH (2010) Astrocytes in injury state rapidly produce anti-inflammatory factors and attenuate microglial inflammatory responses. J Neurochem 115:1161–1171

    Article  CAS  PubMed  Google Scholar 

  • Kipp M, Gingele S, Pott F et al (2011) BLBP-expression in astrocytes during experimental demyelination and in human multiple sclerosis lesions. Brain Behav Immunol 25:1554–1568

    Article  CAS  Google Scholar 

  • Kishi Y, Okudaira S, Tanaka M et al (2006) Autotaxin is overexpressed in glioblastoma multiforme and contributes to cell motility of glioblastoma by converting lysophosphatidylcholine to lysophosphatidic acid. J Biol Chem 281:17492–17500

    Article  CAS  PubMed  Google Scholar 

  • Kornyei Z, Czirok A, Vicsek T, Madarasz E (2000) Proliferative and migratory responses of astrocytes to in vitro injury. J Neurosci Res 61:421–429

    Article  CAS  PubMed  Google Scholar 

  • Koziak K, Kaczmarek E, Kittel A et al (2000) Palmitoylation targets CD39/endothelial ATP diphosphohydrolase to caveole. J Biol Chem 275:2057–2062

    Article  CAS  PubMed  Google Scholar 

  • Kreckler LM, Gizewski E, Wan TC, Auchampach JA (2009) Adenosine suppresses lipopolysaccharide-induced tumor necrosis factor–alpha production by murine macrophages through a protein kinase A and exchange protein activated by cAMP-independent signaling pathway. J Pharmacol Exp Ther 331:1051–1061

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kucher BM, Neary JT (2005) Bi-functional effects of ATP/P2 receptor activation on tumor necrosis factor-alpha release in lipopolysaccharide-stimulated astrocytes. J Neurochem 92:525–535

    Article  CAS  PubMed  Google Scholar 

  • Kukulski F, Lévesque SA, Lavoie EG et al (2005) Comparative hydrolysis of P2 receptor agonists by NTPDases 1, 2, 3 and 8. Purinergic Signal 1:193–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kukulski F, Lévesque SA, Sévigny J (2011) Impact of ectoenzymes on P2 and P1 receptor signaling. Adv Pharmacol 61:263–299

    Article  CAS  PubMed  Google Scholar 

  • Lavrnja I, Bjelobaba I, Stojiljkovic M et al (2009) Time-course changes in ectonucleotidase activities during experimental autoimmune encephalomyelitis. Neurochem Int 55:193–198

    Article  CAS  PubMed  Google Scholar 

  • Lavrnja I, Laketa D, Savic D et al (2015) Expression of a second ecto-5'-nucleotidase variant besides the usual protein in symptomatic phase of experimental autoimmune encephalomyelitis. J Mol Neurosci 55:898–911

    Article  CAS  PubMed  Google Scholar 

  • Lawrence T (2009) The nuclear factor NF-κB pathway in inflammation. Cold Spring Harb Perspect Biol 1:a001651

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu JSH, John GR, Sikora A, Lee SC, Brosnan CF (2000) Modulation of interleukin-1β and tumor necrosis factor α signaling by P2 purinergic receptors in human fetal astrocytes. J Neurosci 20:5292–5299

    CAS  PubMed  Google Scholar 

  • Melani A, Turchi D, Vannucchi MG, Cipriani S, Gianfriddo M, Pedata F (2005) ATP extracellular concentrations are increased in the rat striatum during in vivo ischemia. Neurochem Int 47:442–448

    Article  CAS  PubMed  Google Scholar 

  • Mills JH, Thompson LF, Mueller C, Waickman AT, Jalkanen S, Niemela J, Airas L, Bynoe MS (2008) CD73 is required for efficient entry of lymphocytes into the central nervous system during experimental autoimmune encephalomyelitis. PNAS 105:9325–9330

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Mingam R, De Smedta V, Amédéea T et al (2008) In vitro and in vivo evidence for a role of the P2X7 receptor in the release of IL-1β in the murine brain. Brain Behav Immun 22:234–244

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Minkiewicz J, de Rivero Vaccari JP, Keane RW (2013) Human astrocytes express a novel NLRP2 inflammasome. Glia 61:1113–1121

    Article  PubMed  Google Scholar 

  • Neary JT, Baker L, Jorgensen SL, Norenberg MD (1994) Extracellular ATP induces stellation and increases glial fibrillary acidic protein content and DNA synthesis in primary astrocyte cultures. Acta Neuropathol 87:8–13

    Article  CAS  PubMed  Google Scholar 

  • Neary JT, Kang Y, Bu Y, Yu E, Akong K, Peters CM (1999) Mitogenic signaling by ATP/P2Y purinergic receptors in astrocytes: involvement of a calcium-independent protein kinase C, extracellular signal-regulated protein kinase pathway distinct from the phosphatidylinositol-specific phospholipase C/calcium pathway. J Neurosci 19:4211–4220

    CAS  PubMed  Google Scholar 

  • Nedeljkovic N, Bjelobaba I, Lavrnja I et al (2008) Early temporal changes in ecto-nucleotidase activity after cortical stab injury in rat. Neurochem Res 33:873–879

    Article  CAS  PubMed  Google Scholar 

  • Nedeljkovic N, Bjelobaba I, Subasic S et al (2006) Upregulation of ectonucleotidase activity after cortical stab injury in rat. Cell Biol Int 30:541–546

    Article  CAS  PubMed  Google Scholar 

  • Niemela J, Henttinen T, Yegutkin GG, Airas L, Kujari AM, Rajala P, Jalkanen S (2004) IFN-alpha induced adenosine production on the endothelium: a mechanism mediated by CD73 (ecto-5'-nucleotidase) up-regulation. J Immunol 172:1646–1653

    Article  PubMed  Google Scholar 

  • Niemela J, Ifergan I, Yegutkin GG, Jalkanen S, Prat A, Airas L (2008) IFN-β regulates CD73 and adenosine expression at the blood–brain barrier. Eur J Immunol 38:2718–2726

    Article  CAS  PubMed  Google Scholar 

  • Olmo N, Turnay J, Risse G, Deutzmann R, von der Mark K, Lizarbe A (1992) Modulation of 5′-nucleotidase activity in plasma membranes and intact cells by the extracellular matrix proteins laminin and fibronectin. Biochem J 282:181–188

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ridet JL, Malhotra SK, Privat Am Gage FH (1997) Reactive astrocytes: cellular and molecular cues to biological function. Trends Neurosci 20:570–577

    Article  CAS  PubMed  Google Scholar 

  • Sadej R, Inai K, Rajfur Z et al (2008) Tenascin C interacts with ecto-5-nucleotidase (eN) and regulates adenosine generation in cancer cells. Biochim Biophys Acta 1782:35–40

    Article  CAS  PubMed  Google Scholar 

  • Sadej R, Skladanowski AC (2012) Dual, enzymatic and non-enzymatic, function of ecto-5’-nucleotidase (eN, CD73) in migration and invasion of A375 melanoma cells. Acta Biochim Pol 59:647–652

    CAS  PubMed  Google Scholar 

  • Savaskan NE, Rocha L, Kotter MR et al (2007) Autotaxin (NPP-2) in the brain: cell type-specific expression and regulation during development and after neurotrauma. Cell Mol Life Sci 64:230–243

    Article  CAS  PubMed  Google Scholar 

  • Savic V, Stefanovic N, Ardaillou N, Ardaillou R (1990) Induction of ecto-5′-nucleotidase of rat cultured mesangial cells by interleukin-1β and tumor necrosis factor-α. Immunology 70:321–326

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schicker K, Hussl S, Chandaka GK et al (2009) A membrane network of receptors and enzymes for adenine nucleotides and nucleosides. Biochim Biophys Acta 1793:325–334

    Article  CAS  PubMed  Google Scholar 

  • Sévigny J, Sundberg C, Braun N et al (2002) Differential catalytic properties and vascular topography of murine nucleoside triphosphate diphosphohydrolase 1 (NTPDase1) and NTPDase2 have implications for thromboregulation. Blood 99:2801–2809

    Article  PubMed  Google Scholar 

  • Smith TM, Kirley TL (1998) Cloning, sequencing, and expression of a human brain ecto-apyrase related to both the ecto-ATPases and CD39 ecto-apyrases1. Biochim Biophys Acta 1386:65–78

    Article  CAS  PubMed  Google Scholar 

  • Spychala J, Zimmermann AG, Mitchell BS (1999) Tissue-specific regulation of the ecto-5′- nucleotidase promoter: role of a CRE site in mediating repression by the upstream regulatory region. J Biol Chem 274:22705–22712

    Article  CAS  PubMed  Google Scholar 

  • Stefan C, Jansen S, Bollen M (2006) Modulation of purinergic signaling by NPP-type ectophosphodiesterases. Purinergic Signal 2:361–370

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Synnestvedt K, Furuta GT, Comerford KM et al (2002) Ecto-5′-nucleotidase (CD73) regulation by hypoxia-inducible factor-1 mediates permeability changes in intestinal epithelia. J Clin Invest 110:993–1002

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Terp MK, Olesen KA, Arnspang EC, Lund RR, Lagerholm BC, Ditzel HJ, Leth-Larsen R (2013) Anti human CD73 monoclonal antibody inhibits metastasis formation in human breast cancer by inducing clastering and internalization od CD73 expressed on the surface of cancer cells. J Immunol 191:4165–4173

  • Tran MD, Neary JT (2006) Purinergic signaling induces thrombospondin-1 expression in astrocytes. Proc Natl Acad Sci U S A 103:9321–9326

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tran MD, Wanner IB, Neary JT (2008) Purinergic receptor signaling regulates N-cadherin expression in primary astrocyte cultures. J Neurochem 105:272–286

    Article  CAS  PubMed  Google Scholar 

  • Vogel M, Zimmermann H, Singer W (1993) Transient association of the HNK-1 epitope with 5'-nucleotidase during development of the cat visual cortex. Eur J Neurosci 5:1423–1425

    Article  CAS  PubMed  Google Scholar 

  • Vollmayer P, Chair T, Goding JW, Sano K, Servos J, Zimmermann H (2003) Hydrolysis of diadenosine polyphosphates by nucleotide pyrophosphatase/phosphodiesterases. Eur J Biochem 270:2971–2978

    Article  CAS  PubMed  Google Scholar 

  • Wink MR, Braganhol E, Tamajusuku AS et al (2006) Nucleoside triphosphate diphosphohydrolase-2 (NTPDase2/CD39L1) is the dominant ectonucleotidase expressed by rat astrocytes. Neuroscience 138:421–432

    Article  CAS  PubMed  Google Scholar 

  • Zeng J-W, Liu X-H, Zhang J-H, Xi-Gui W, Ruan H-Z (2008) P2Y1 receptor-mediated glutamate release from cultured dorsal spinal cord astrocytes. J Neurochem 106:2106–2118

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann H, Zebisch M, Strater N (2012) Cellular functions and molecular structure of ecto-nucleotidases. Purinergic Signal 8:437–502

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zou J, Vetreno RP, Crews FT (2012) ATP-P2X7 receptor signaling controls basal and TNF α-stimulated glial cell proliferation. Glia 60:661–673

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Serbian Ministry for Education and Science Project No. III41014 and Bilateral Project between DAAD and Serbian Ministry of Education and Science. DB was supported by DAAD financed Scientific Internship in Germany for Undergraduates and Graduates from Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadezda Nedeljkovic.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brisevac, D., Adzic, M., Laketa, D. et al. Extracellular ATP Selectively Upregulates Ecto-Nucleoside Triphosphate Diphosphohydrolase 2 and Ecto-5′-Nucleotidase by Rat Cortical Astrocytes In Vitro. J Mol Neurosci 57, 452–462 (2015). https://doi.org/10.1007/s12031-015-0601-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-015-0601-y

Keywords

Navigation