Skip to main content

Advertisement

Log in

Cannabinoid Receptor CB1 Is Involved in Nicotine-Induced Protection Against Aβ1–42 Neurotoxicity in HT22 Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Emerging evidences suggest that nicotine exerts a neuroprotective effect on Alzheimer’s disease (AD), yet the precise mechanism is not fully elucidated. Here, HT22 cells were exposed to amyloid beta protein fragment (Aβ)1–42 to mimic the pathological process of neuron in AD. We hypothesized that cannabinoid receptor CB1 is involved in the nicotine-induced neuroprotection against Aβ1–42 injury in HT22 cells. CB1 expression in HT22 cells was investigated by immunocytochemistry and Western blot. The injury of HT22 cells was evaluated by cellular morphology, cell viability, and lactate dehydrogenase (LDH) release. The apoptosis of HT22 cells was assessed by flow cytometry and expressions of Bcl-2 and Bax. The results demonstrated that nicotine markedly upregulated CB1 expression, increased cell viability, ameliorated cellular morphology, decreased LDH release, and reduced the apoptotic rate of HT22 cells exposed to Aβ1–42 for 24 h, while the blockade of CB1 or the inhibition of protein kinase C (PKC) partially reversed the neuroprotection. Furthermore, the blockade of CB1 reversed nicotine-induced PKC activation in HT22 cells exposed to Aβ1–42. These results suggest that CB1 is involved in the nicotine-induced neuroprotection against Aβ1–42 neurotoxicity, and the neuroprotection may be dependent on the activation of PKC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Aβ:

Amyloid beta protein fragment

AD:

Alzheimer’s disease

ANOVA:

Analysis of variance

BSA:

Bovine serum albumin

CB1:

Cannabinoid receptor CB1

CB2:

Cannabinoid receptor CB2

DAPI:

4′,6-Diamidino-2-phenylindole

DMEM:

Dulbecco’s modified Eagle’s medium

DMSO:

Dimethyl sulfoxide

EA:

Electroacupuncture

LDH:

Lactate dehydrogenase

MTT:

3-(4,5-Dimethyl-2-thiazolyl)-2,5-diphenyl-2-tetrazolium bromide

PBS:

Phosphate-buffered saline

NMDA:

N-methyl-d-aspartate

PKC:

Protein kinase C

References

  • Arora K, Alfulaij N, Higa JK, Panee J, Nichols RA (2013) Impact of sustained exposure to β-amyloid on calcium homeostasis and neuronal integrity in model nerve cell system expressing α4β2 nicotinic acetylcholine receptors. J Biol Chem 288:11175–11190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ashley RH, Harroun TA, Hauss T, Breen KC, Bradshaw JP (2006) Autoinsertion of soluble oligomers of Alzheimer’s Abeta (1-42) peptide into cholesterol-containing membranes is accompanied by relocation of the sterol towards the bilayer surface. BMC Struct Biol 6:21

    Article  PubMed Central  PubMed  Google Scholar 

  • Bateman RJ, Xiong C, Benzinger TL et al (2012) Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. N Engl J Med 367:795–804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Budas GR, Churchill EN, Mochly-Rosen D (2007) Cardioprotective mechanisms of PKC isozyme-selective activators and inhibitors in the treatment of ischemia-reperfusion injury. Pharmacol Res 55:523–536

    Article  CAS  PubMed  Google Scholar 

  • Cannarsa R, Carretta D, Lattanzio F, Candeletti S, Romualdi P (2012) ∆(9)-Tetrahydrocannabinol decreases NOP receptor density and mRNA levels in human SH-SY5Y cells. J Mol Neurosci 46:285–292

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Nie H, Tian L, Tong L, Yang L, Lao N, Dong H, Sang H, Xiong L (2013a) Nicotine-induced neuroprotection against ischemic injury involves activation of endocannabinoid system in rats. Neurochem Res 38:364–370

    Article  CAS  PubMed  Google Scholar 

  • Chen GJ, Xiong Z, Yan Z (2013b) Aβ impairs nicotinic regulation of inhibitory synaptic transmission and interneuron excitability in prefrontal cortex. Mol Neurodegener 8:3

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ciobica A, Padurariu M, Hritcu L (2012) The effects of short-term nicotine administration on behavioral and oxidative stress deficiencies induced in a rat model of Parkinson’s disease. Psychiatr Danub 24:194–205

    PubMed  Google Scholar 

  • Cole G, Dobkins KR, Hansen LA, Terry RD, Saitoh T (1988) Decreased levels of protein kinase C in Alzheimer brain. Brain Res 452:165–174

    Article  CAS  PubMed  Google Scholar 

  • Decker MW, Majchrzak MJ, Anderson DJ (1992) Effects of nicotine on spatial memory deficits in rats with septal lesions. Brain Res 572:281–285

    Article  CAS  PubMed  Google Scholar 

  • Della-Morte D, Raval AP, Dave KR, Lin HW, Perez-Pinzon MA (2011) Post-ischemic activation of protein kinase C ε protects the hippocampus from cerebral ischemic injury via alterations in cerebral blood flow. Neurosci Lett 487:158–162

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doody RS, Thomas RG, Farlow M et al (2014) Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N Engl J Med 370:311–321

    Article  CAS  PubMed  Google Scholar 

  • Gao ZG, Cui WY, Zhang HT, Liu CG (1998) Effects of nicotine on 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine-induced depression of striatal dopamine content and spontaneous locomotor activity in C57 black mice. Pharmacol Res 38:101–106

    Article  CAS  PubMed  Google Scholar 

  • Gou X, Wang Q, Yang Q, Xu L, Xiong L (2011) TAT-NEP1-40 as a novel therapeutic candidate for axonal regeneration and functional recovery after stroke. J Drug Target 19:86–95

    Article  CAS  PubMed  Google Scholar 

  • Ferchmin PA, Hao J, Perez D, Penzo M, Maldonado HM, Gonzalez MT, Rodriguez AD, de Vellis J (2005) Tobacco cembranoids protect the function of acute hippocampal slices against NMDA by a mechanism mediated by alpha4beta2 nicotinic receptors. J Neurosci Res 82:631–641

    Article  CAS  PubMed  Google Scholar 

  • Hampson RE, Mu J, Deadwyler SA (2000) Cannabinoid and kappa opioid receptors reduce potassium K current via activation of G(s) proteins in cultured hippocampal neurons. J Neurophysiol 84:2356–2364

    CAS  PubMed  Google Scholar 

  • Hardy J, Selkoe DJ (2002) The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 297:353–356

    Article  CAS  PubMed  Google Scholar 

  • Hashemizadeh S, Sardari M, Rezayof A (2014) Basolateral amygdala CB1 cannabinoid receptors mediate nicotine-induced place preference. Prog Neuropsychopharmacol Biol Psychiatry 51C:65–71

    Article  Google Scholar 

  • Hitti FL, Siegelbaum SA (2014) The hippocampal CA2 region is essential for social memory. Nature 508:88–92

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lee PN (1994) Smoking and Alzheimer’s disease: a review of the epidemiological evidence. Neuroepidemiology 13:131–144

    Article  PubMed  Google Scholar 

  • Le Foll B, Forget B, Aubin HJ, Goldberg SR (2008) Blocking cannabinoid CB1 receptors for the treatment of nicotine dependence: insights from pre-clinical and clinical studies. Addict Biol 13:239–252

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu W, Dou F, Feng J, Yan Z (2011) RACK1 is involved in β-amyloid impairment of muscarinic regulation of GABAergic transmission. Neurobiol Aging 32:1818–1826

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Maldonado R, Berrendero F (2010) Endogenous cannabinoid and opioid systems and their role in nicotine addiction. Curr Drug Targets 11:440–449

    Article  CAS  PubMed  Google Scholar 

  • Matsushima H, Shimohama S, Chachin M, Taniguchi T, Kimura J (1996) Ca2+-dependent and Ca2+-independent protein kinase C changes in the brain of patients with Alzheimer’s disease. J Neurochem 67:317–323

    Article  CAS  PubMed  Google Scholar 

  • Morens DM, Grandinetti A, Reed D, White LR, Ross GW (1995) Cigarette smoking and protection from Parkinson’s disease: false association or etiologic clue? Neurology 45:1041–1051

    Article  CAS  PubMed  Google Scholar 

  • Nanri M, Kasahara N, Yamamoto J, Miyake H, Watanabe H (1997) GTS-21, a nicotinic agonist, protects against neocortical neuronal cell loss induced by the nucleus basalis magnocellularis lesion in rats. Jpn J Pharmacol 74:285–289

    Article  CAS  PubMed  Google Scholar 

  • Panikashvili D, Mechoulam R, Beni SM, Alexandrovich A, Shohami E (2005) CB1 cannabinoid receptors are involved in neuroprotection via NF-kappa B inhibition. J Cereb Blood Flow Metab 25:477–484

    Article  CAS  PubMed  Google Scholar 

  • Shim S, Kwon J (2012) Effects of [6]-shogaol on cholinergic signaling in HT22 cells following neuronal damage induced by hydrogen peroxide. Food Chem Toxicol 50:1454–1459

    Article  CAS  PubMed  Google Scholar 

  • Tan T, Xie J, Liu T, Chen X, Zheng X, Tong Z, Tian X (2013) Low-frequency (1 Hz) repetitive transcranial magnetic stimulation (rTMS) reverses Aβ(1-42)-mediated memory deficits in rats. Exp Gerontol 48:786–794

    Article  PubMed  Google Scholar 

  • Wang HY, Pisano MR, Friedman E (1994) Attenuated protein kinase C activity and translocation in Alzheimer’s disease brain. Neurobiol Aging 15:293–298

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Li X, Chen Y, Wang F, Yang Q, Chen S, Min Y, Li X, Xiong L (2011) Activation of epsilon protein kinase C-mediated anti-apoptosis is involved in rapid tolerance induced by electroacupuncture pretreatment through cannabinoid receptor type 1. Stroke 42:389–396

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Peng Y, Chen S, Gou X, Hu B, Du J, Lu Y, Xiong L (2009) Pretreatment with electroacupuncture induces rapid tolerance to focal cerebral ischemia through regulation of endocannabinoid system. Stroke 40:2157–2164

    Article  PubMed  Google Scholar 

  • Wei H, Yao X, Yang L, Wang S, Guo F, Zhou H, Marsicano G, Wang Q, Xiong L (2013) Glycogen synthase kinase-3β is involved in electroacupuncture pretreatment via the cannabinoid CB1 receptor in ischemic stroke. Mol Neurobiol 49:326–336

    Article  PubMed  Google Scholar 

  • Xu X, Kim JA, Zuo Z (2008) Isoflurane preconditioning reduces mouse microglial activation and injury induced by lipopolysaccharide and interferon-gamma. Neuroscience 154:1002–1008

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yu W, Mechawar N, Krantic S, Quirion R (2011) α7 Nicotinic receptor activation reduces β-amyloid-induced apoptosis by inhibiting caspase-independent death through phosphatidylinositol 3-kinase signaling. J Neurochem 119:848–858

    Article  CAS  PubMed  Google Scholar 

  • Zhang CQ, Wu HJ, Wang SY, Yin S, Lu XJ, Miao Y, Wang XH, Yang XL, Wang Z (2013) Suppression of outward K+ currents by WIN55212-2 in rat retinal ganglion cells is independent of CB1/CB2 receptors. Neuroscience 253:183–193

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was funded by the National Natural Science Foundation of China (Nos. 81072888 and 81171237).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hanfei Sang or Lize Xiong.

Additional information

Mingchun Wu Ji Jia and Chong Lei contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, M., Jia, J., Lei, C. et al. Cannabinoid Receptor CB1 Is Involved in Nicotine-Induced Protection Against Aβ1–42 Neurotoxicity in HT22 Cells. J Mol Neurosci 55, 778–787 (2015). https://doi.org/10.1007/s12031-014-0422-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0422-4

Keywords

Navigation