Skip to main content

Advertisement

Log in

In Vitro Effects of Cocaine on Tunneling Nanotube Formation and Extracellular Vesicle Release in Glioblastoma Cell Cultures

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The effects of cocaine (150 nM, 300 nM, and 150 μM) on human glioblastoma cell cultures were studied on tunneling nanotube formation (1-h cocaine treatment) and extracellular vesicle release (1-, 3-, and 8-h cocaine treatment). Cocaine significantly increased the number of tunneling nanotubes only at the lowest concentration used. The release of extracellular vesicles (mainly exosomes) into the medium was stimulated by cocaine at each concentration used with a maximum effect at the highest concentration tested (150 μM). Moreover, cocaine (150 nM) significantly increased the number of vesicles with 61–80 nm diameter while at concentrations of 300 nM and 150 μM, and the smaller vesicles (30–40 nm diameter) were significantly increased with a reduction of the larger vesicles (41–60 nm diameter). A time dependence in the release of extracellular vesicles was observed. In view of the proposed role of these novel intercellular communication modes in the glial-neuronal plasticity, it seems possible that they can participate in the processes leading to cocaine addiction. The molecular target/s involved in these cocaine effects could be specific molecular components of plasma membrane lipid rafts and/or cocaine-induced modifications in cytoplasmic lipid composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Agnati LF, Fuxe K (2000) Volume transmission as a key feature of information handling in the central nervous system possible new interpretative value of the Turing’s B-type machine. Prog Brain Res 125:3–19

    Article  CAS  PubMed  Google Scholar 

  • Agnati LF, Fuxe K, Baluska F, Guidolin D (2009) Implications of the ‘Energide’ concept for communication and information handling in the central nervous system. J Neural Transm 116:1037–1052

    Article  CAS  PubMed  Google Scholar 

  • Agnati LF, Guidolin D, Guescini M, Genedani S, Fuxe K (2010) Understanding wiring and volume transmission. Brain Res Rev 64:137–159

    Article  PubMed  Google Scholar 

  • Bailey DN (1998) Cocaine and cocaethylene binding to human milk. Am J Clin Pathol 110:491–494

    CAS  PubMed  Google Scholar 

  • Baluška F, Volkmann D, Barlow PW (2006) Cell–cell channels and their implications for cell theory. In: Baluška F, Volkmann D, Barlow PW (eds) Cell–cell channels. Landes Bioscience, Georgetown TX/Springer Science, New York, pp 1–18

    Chapter  Google Scholar 

  • Belting M, Wittrup A (2008) Nanotubes, exosomes, and nucleic acid-binding peptides provide novel mechanisms of intercellular communication in eukaryotic cells: implications in health and disease. J Cell Biol 183:1187–1191

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cai H, Reinisch K, Ferro-Novick S (2007) Coats, tethers, Rabs, and SNAREs work together to mediate the intracellular destination of a transport vesicle. Dev Cell 12:671–682

    Article  CAS  PubMed  Google Scholar 

  • Cocucci E, Racchetti G, Meldolesi J (2009) Shedding microvesicles: artefacts no more. Trends Cell Biol 19:43–51

    Article  CAS  PubMed  Google Scholar 

  • de Gassart A, Geminard C, Fevrier B, Raposo G, Vidal M (2003) Lipid raft-associated protein sorting in exosomes. Blood 102:4336–4344

    Article  PubMed  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferraro L, Frankowska M, Marcellino D et al (2012) A novel mechanism of cocaine to enhance dopamine d2-like receptor mediated neurochemical and behavioral effects. An in vivo and in vitro study. Neuropsychopharmacol 37:1856–1866

    Article  CAS  Google Scholar 

  • Fifadara NH, Beer F, Ono S, Ono SJ (2010) Interaction between activated chemokine receptor 1 and FcepsilonRI at membrane rafts promotes communication and F-actin-rich cytoneme extensions between mast cells. Int Immunol 22:113–128

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Genedani S, Carone C, Guidolin D et al (2010) Differential sensitivity of A2A and especially D2 receptor trafficking to cocaine compared with lipid rafts in cotransfected CHO cell lines. Novel actions of cocaine independent of the DA transporter. J Mol Neurosci 41:347–357

    Article  CAS  PubMed  Google Scholar 

  • Goncharova LB, Tarakanov AO (2008) Nanotubes at neural and immune synapses. Curr Med Chem 15:210–218

    Article  CAS  PubMed  Google Scholar 

  • Gurke S, Barroso JF, Gerdes HH (2008) The art of cellular communication: tunnelling nanotubes bridge the divide. Histochem Cell Biol 129:539–550

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hase K, Kimura S, Takatsu H et al (2009) M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat Cell Biol 11:1427–1432

    Article  CAS  PubMed  Google Scholar 

  • Hayashi T, Su TP (2005) The potential role of sigma-1 receptors in lipid transport and lipid raft reconstitution in the brain: implication for drug abuse. Life Sci 77:1612–1624

    Article  CAS  PubMed  Google Scholar 

  • Hurley JH (2010) The ESCRT complexes. Crit Rev Biochem Mol Biol 45:463–487

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kabaso D, Lokar M, Kralj-Iglič V, Veranič P, Iglič A (2011) Temperature and cholera toxin B are factors that influence formation of membrane nanotubes in RT4 and T24 urothelial cancer cell lines. Int J Nanomedicine 6:495–509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kabaso D, Bobrovska N, Góźdź W et al (2012) The transport along membrane nanotubes driven by the spontaneous curvature of membrane components. Bioelectrochemistry 87:204–210

    Article  CAS  PubMed  Google Scholar 

  • Kalivas PW, Volkow ND (2005) The neural basis of addiction: a pathology of motivation and choice. Am J Psychiatry 162:1403–1413

    Article  PubMed  Google Scholar 

  • Kimura S, Hase K, Ohno H (2012) Tunneling nanotubes: emerging view of their molecular components and formation mechanisms. Exp Cell Res 318:1699–1706

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Bloom FE (1988) Cellular and molecular mechanisms of drug dependence. Science 242:715–723

    Article  CAS  PubMed  Google Scholar 

  • Koyanagi M, Brandes RP, Haendeler J, Zeiher AM, Dimmeler S (2005) Cell-to-cell connection of endothelial progenitor cells with cardiac myocytes by nanotubes: a novel mechanism for cell fate changes? Circ Res 96:1039–1041

    Article  CAS  PubMed  Google Scholar 

  • Lakkaraju A, Rodriguez-Boulan E (2008) Itinerant exosomes: emerging roles in cell and tissue polarity. Trends Cell Biol 18:199–209

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Laulagnier K, Motta C, Hamdi S et al (2004) Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem J 380:161–171

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Leskawa KC, Jackson GH, Moody CA, Spear LP (1994) Cocaine exposure during pregnancy affects rat neonate and maternal brain glycosphingolipids. Brain Res Bull 33:195–198

    Article  CAS  PubMed  Google Scholar 

  • Llorente A, Skotland T, Sylvänne T et al (2013) Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim Biophys Acta 1831:1302–1309

    Article  CAS  PubMed  Google Scholar 

  • Lokar M, Kabaso D, Resnik N et al (2012) The role of cholesterol-sphingomyelin membrane nanodomains in the stability of intercellular membrane nanotubes. Int J Nanomedicine 7:1891–1902

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mallegol J, Van Niel G, Lebreton C et al (2007) T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterol 132:1866–1876

    Article  CAS  Google Scholar 

  • Möbius W, Ohno-Iwashita Y, van Donselaar EG et al (2002) Immunoelectron microscopic localization of cholesterol using biotinylated and non-cytolytic perfringolysin O. J Histochem Cytochem 50:43–55

  • Mortensen OV, Amara SG (2003) Dynamic regulation of the dopamine transporter. Eur J Pharmacol 479:159–170

    Article  CAS  PubMed  Google Scholar 

  • Moskalenko S, Henry DO, Rosse C, Mirey G, Camonis JH, White MA (2002) The exocyst is a Ral effector complex. Nat Cell Biol 4:66–72

    Article  CAS  PubMed  Google Scholar 

  • Nassogne MC, Lizarraga C, N’Kuli F et al (2004) Cocaine induces a mixed lysosomal lipidosis in cultured fibroblasts, by inactivation of acid sphingomyelinase and inhibition of phospholipase A1. Toxicol Appl Pharmacol 194:101–110

    Article  CAS  PubMed  Google Scholar 

  • Onfelt B, Nedvetzki S, Benninger RK et al (2006) Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J Immunol 177:8476–8483

    Article  PubMed  Google Scholar 

  • Raiborg C, Stenmark H (2009) The ESCRT machinery in endosomal sorting of ubiquitylated membrane proteins. Nature 458:445–452

    Article  CAS  PubMed  Google Scholar 

  • Raposo G, Stoorvogel W (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J Cell Biol 200:373–383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ritz MC, Lamb RJ, Goldberg SR, Kuhar MJ (1987) Cocaine receptors on dopamine transporters are related to self-administration of cocaine. Science 237:1219–1223

    Article  CAS  PubMed  Google Scholar 

  • Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH (2004) Nanotubular highways for intercellular organelle transport. Science 303:1007–1010

    Article  CAS  PubMed  Google Scholar 

  • Schorey JS, Bhatnagar S (2008) Exosome function: from tumor immunology to pathogen biology. Traffic 9:871–881

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Simons M, Raposo G (2009) Exosomes: vesicular carriers for intercellular communication. Curr Opin Cell Biol 21:575–581

  • Soo JC, Zhang J, He Q et al (2010) Surface immobilized cholera toxin B subunit (CTB) facilitates vesicle docking, trafficking and exocytosis. Integr Biol (Camb) 2:250–257

    Article  CAS  Google Scholar 

  • Subra C, Grand D, Laulagnier K et al (2010) Exosomes account for vesicle-mediated transcellular transport of activatable phospholipases and prostaglandins. J Lipid Res 51:2105–2120

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sugihara K, Asano S, Tanaka K, Iwamatsu A, Okawa K, Ohta Y (2002) The exocyst complex binds the small GTPase RalA to mediate filopodia formation. Nat Cell Biol 4:73–78

    Article  CAS  PubMed  Google Scholar 

  • Thery C, Amigorena S, Raposo G, Clayton A (2006) Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol Chapter 3:Unit 3.22

  • Torres GE, Gainetdinov RR, Caron MG (2003) Plasma membrane monoamine transporters: structure, regulation and function. Nat Rev Neurosci 4:13–25

    Article  CAS  PubMed  Google Scholar 

  • Trajkovic K, Hsu C, Chiantia S et al (2008) Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–1247

    Article  CAS  PubMed  Google Scholar 

  • Woodward JJ, Compton DM, Balster RL, Martin BR (1995) In vitro and in vivo effects of cocaine and selected local anesthetics on the dopamine transporter. Eur J Pharmacol 277:7–13

    Article  CAS  PubMed  Google Scholar 

  • Wubbolts R, Leckie RS, Veenhuizen PT et al (2003) Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J Biol Chem 278:10963–10972

    Article  CAS  PubMed  Google Scholar 

  • Zink CF, Pagnoni G, Martin ME, Dhamala M, Berns GS (2003) Human striatal response to salient nonrewarding stimuli. J Neurosci 23:8092–8097

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Centro Interdipartimentale Grandi Strumenti of the University of Modena and Reggio Emilia, and in particular Dr. M. Tonelli, for his support in the use of AFM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanna Genedani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carone, C., Genedani, S., Leo, G. et al. In Vitro Effects of Cocaine on Tunneling Nanotube Formation and Extracellular Vesicle Release in Glioblastoma Cell Cultures. J Mol Neurosci 55, 42–50 (2015). https://doi.org/10.1007/s12031-014-0365-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0365-9

Keywords

Navigation