Skip to main content

Advertisement

Log in

Poloxamer-188 Can Attenuate Blood–Brain Barrier Damage to Exert Neuroprotective Effect in Mice Intracerebral Hemorrhage Model

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Blood–brain barrier (BBB) disruption and brain edema formation play important roles in the secondary neuronal death and neurological dysfunction induced by intracerebral hemorrhage (ICH). Poloxamer 188 (P188), a multiblock copolymer surfactant, has been shown to be capable of sealing damaged cell membranes and decrease neuronal cell death. In this study, we explored whether P188 had a protective effect against ICH and its underlying mechanisms. Male ICR mice were subjected to infusion of type IV collagenase (to induce ICH) of saline (for shams) into the left striatum. The results showed that P188-12 mg post-treatment by tail intravenous injection significantly ameliorated the neurological symptoms and brain edema, attenuated BBB permeability, and decreased cell insults and injury volume at 24 and 72 h after ICH. Furthermore, P188 maintained the protein levels of tight junction (TJ) proteins including claudin-5, occludin, and zonula occludens-1, and reversed the increases of nuclear factor-kappaB (NF-κB), matrix metalloproteinase (MMP)-2, and MMP-9 protein expression at 72 h post ICH. Immunofluorescence showed P188 treatment rearranged the structure of TJ proteins in a continuous and linear pattern. Therefore, the present study concludes that P188 can protect against ICH, and the protective effect was associated with preventing BBB disruption through NF-κB-MMPs-mediated TJ proteins degradation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ICH:

Intracerebral hemorrhage

BBB:

Blood–brain barrier

P188:

Poloxamer 188

PI:

Propidium iodide

TJ:

Tight junction

MMP:

Matrix metalloproteinase

ZO:

Zonula occludens

BCA:

Bicinchoninic acid

SDS:

Sodium dodecyl sulfate

PVDF:

Hybond-polyvinylidene difluoride

TBST:

Tris-buffered saline with tween

References

  • Abbott NJ, Patabendige AA, Dolman DE, Yusof SR, Begley DJ (2010) Structure and function of the blood-brain barrier. Neurobiol Dis 37:13–25

    Article  CAS  PubMed  Google Scholar 

  • Balami JS, Buchan AM (2012) Complications of intracerebral haemorrhage. Lancet Neurol 11:101–118

    Article  PubMed  Google Scholar 

  • Bao HJ, Wang T, Zhang MY, Liu R, Dai DK, Wang YQ, Wang L, Zhang L, Gao YZ, Qin ZH, Chen XP, Tao LY (2012) Poloxamer-188 attenuates TBI-induced blood-brain barrier damage leading to decreased brain edema and reduced cellular death. Neurochem Res 37:2856–2867

    Article  CAS  PubMed  Google Scholar 

  • Belayev L, Busto R, Zhao W, Ginsberg MD (1996) Quantitative evaluation of blood-brain barrier permeability following middle cerebral artery occlusion in rats. Brain Res 739:88–96

    Article  CAS  PubMed  Google Scholar 

  • Borgens RB, Bohnert D, Duerstock B, Spomar D, Lee RC (2004) Subcutaneous tri-block copolymer produces recovery from spinal cord injury. J Neurosci Res 76:141–154

    Article  CAS  PubMed  Google Scholar 

  • Cadichon SB, Le Hoang M, Wright DA, Curry DJ, Kang U, Frim DM (2007) Neuroprotective effect of the surfactant poloxamer 188 in a model of intracranial hemorrhage in rats. J Neurosurg 106:36–40

    Article  PubMed  Google Scholar 

  • Clark W, Gunion-Rinker L, Lessov N, Hazel K (1998) Citicoline treatment for experimental intracerebral hemorrhage in mice. Stroke 29:2136–2140

    Article  CAS  PubMed  Google Scholar 

  • Frim DM, Wright DA, Curry DJ, Cromie W, Lee R, Kang UJ (2004) The surfactant poloxamer-188 protects against glutamate toxicity in the rat brain. Neuroreport 15:171–174

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S (1993) Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123:1777–1788

    Article  CAS  PubMed  Google Scholar 

  • Garcia JH, Wagner S, Liu KF, Hu XJ (1995) Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation. Stroke 26:627–634, discussion 635

    Article  CAS  PubMed  Google Scholar 

  • Gebel JM, Broderick JP (2000) Intracerebral hemorrhage. Neurol Clin 18:419–438

    Article  CAS  PubMed  Google Scholar 

  • Gebel JM Jr, Jauch EC, Brott TG, Khoury J, Sauerbeck L, Salisbury S, Spilker J, Tomsick TA, Duldner J, Broderick JP (2002) Relative edema volume is a predictor of outcome in patients with hyperacute spontaneous intracerebral hemorrhage. Stroke 33:2636–2641

    Article  PubMed  Google Scholar 

  • Gu JH, Ge JB, Li M, Xu HD, Wu F, Qin ZH (2013) Poloxamer 188 protects neurons against ischemia/reperfusion injury through preserving integrity of cell membranes and blood brain barrier. PLoS One 8:e61641

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Honda M, Nakagawa S, Hayashi K, Kitagawa N, Tsutsumi K, Nagata I, Niwa M (2006) Adrenomedullin improves the blood–brain barrier function through the expression of claudin-5. Cell Mol Neurobiol 26:109–118

    Article  CAS  PubMed  Google Scholar 

  • Hua Y, Schallert T, Keep RF, Wu J, Hoff JT, Xi G (2002) Behavioral tests after intracerebral hemorrhage in the rat. Stroke 33:2478–2484

    Article  PubMed  Google Scholar 

  • Keep RF, Xiang J, Ennis SR, Andjelkovic A, Hua Y, Xi G, Hoff JT (2008) Blood-brain barrier function in intracerebral hemorrhage. Acta Neurochir Suppl 105:73–77

    Article  CAS  PubMed  Google Scholar 

  • Kilinc D, Gallo G, Barbee KA (2008) Mechanically-induced membrane poration causes axonal beading and localized cytoskeletal damage. Exp Neurol 212:422–430

    Article  CAS  PubMed  Google Scholar 

  • Li CH, Wang Y, Qin ZH (2011) Neuroprotective effects of surfactant poloxamer 188 in excitotoxicity and underlying mechanisms. Chinese Pharmacological Bulletin 26:1418–1424

  • Luo CL, Chen XP, Li LL, Li QQ, Li BX, Xue AM, Xu HF, Dai DK, Shen YW, Tao LY, Zhao ZQ (2013) Poloxamer 188 attenuates in vitro traumatic brain injury-induced mitochondrial and lysosomal membrane permeabilization damage in cultured primary neurons. J Neurotrauma 30:597–607

    Article  PubMed  Google Scholar 

  • Marks JD, Pan CY, Bushell T, Cromie W, Lee RC (2001) Amphiphilic, tri-block copolymers provide potent membrane-targeted neuroprotection. FASEB J 15:1107–1109

    CAS  PubMed  Google Scholar 

  • Power C, Henry S, Del Bigio MR, Larsen PH, Corbett D, Imai Y, Yong VW, Peeling J (2003) Intracerebral hemorrhage induces macrophage activation and matrix metalloproteinases. Ann Neurol 53:731–742

    Article  CAS  PubMed  Google Scholar 

  • Qureshi AI (2011) Intracerebral hemorrhage specific intensity of care quality metrics. Neurocrit Care 14:291–317

    Article  PubMed  Google Scholar 

  • Regan RF, Wang Y, Ma X, Chong A, Guo Y (2001) Activation of extracellular signal-regulated kinases potentiates hemin toxicity in astrocyte cultures. J Neurochem 79:545–555

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg GA, Navratil M (1997) Metalloproteinase inhibition blocks edema in intracerebral hemorrhage in the rat. Neurology 48:921–926

    Article  CAS  PubMed  Google Scholar 

  • Sandoval KE, Witt KA (2008) Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 32:200–219

    Article  CAS  PubMed  Google Scholar 

  • Schmitt TH, Frezzatti WA Jr, Schreier S (1993) Hemin-induced lipid membrane disorder and increased permeability: a molecular model for the mechanism of cell lysis. Arch Biochem Biophys 307:96–103

    Article  CAS  PubMed  Google Scholar 

  • Serbest G, Horwitz J, Barbee K (2005) The effect of poloxamer-188 on neuronal cell recovery from mechanical injury. J Neurotrauma 22:119–132

    Article  PubMed  Google Scholar 

  • Serbest G, Horwitz J, Jost M, Barbee K (2006) Mechanisms of cell death and neuroprotection by poloxamer 188 after mechanical trauma. FASEB J 20:308–310

    CAS  PubMed  Google Scholar 

  • Wagner KR (2007) Modeling intracerebral hemorrhage: glutamate, nuclear factor-kappa B signaling and cytokines. Stroke 38:753–758

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Doré S (2007) Inflammation after intracerebral hemorrhage. J Cereb Blood Flow Metab 27:894–908

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Tsirka SE (2005) Neuroprotection by inhibition of matrix metalloproteinases in a mouse model of intracerebral haemorrhage. Brain 128:1622–1633

    Article  PubMed  Google Scholar 

  • Wang J, Rogove AD, Tsirka AE, Tsirka SE (2003) Protective role of tuftsin fragment 1-3 in an animal model of intracerebral hemorrhage. Ann Neurol 54:655–664

    Article  CAS  PubMed  Google Scholar 

  • Wang T, Huang Y, Zhang M, Wang L, Wang Y, Zhang L, Dong W, Chang P, Wang Z, Chen X, Tao L (2013) [Gly14]-Humanin offers neuroprotection through glycogen synthase kinase-3β inhibition in a mouse model of intracerebral hemorrhage. Behav Brain Res 247:132–139

    Article  CAS  PubMed  Google Scholar 

  • Whalen MJ, Dalkara T, You Z, Qiu J, Bermpohl D, Mehta N, Suter B, Bhide PG, Lo EH, Ericsson M, Moskowitz MA (2008) Acute plasmalemma permeability and protracted clearance of injured cells after controlled cortical impact in mice. J Cereb Blood Flow Metab 28:490–505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xi G, Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 5:53–63

    Article  PubMed  Google Scholar 

  • Yong VW, Power C, Forsyth P, Edwards DR (2001) Metalloproteinases in biology and pathology of the nervous system. Nat Rev Neurosci 2:502–511

    Article  CAS  PubMed  Google Scholar 

  • Zhao X, Zhang Y, Strong R, Zhang J, Grotta JC, Aronowski J (2007) Distinct patterns of intracerebral hemorrhage-induced alterations in NF-kappaB subunit, iNOS, and COX-2 expression. J Neurochem 101:652–663

    Article  CAS  PubMed  Google Scholar 

  • Zhu X, Tao L, Tejima-Mandeville E, Qiu J, Park J, Garber K, Ericsson M, Lo EH, Whalen MJ (2012) Plasmalemma permeability and necrotic cell death phenotypes after intracerebral hemorrhage in mice. Stroke 43:524–531

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants (nos. 81172911, 81271379, 81273338, 81301039, and 81373251) from the National Natural Science Foundation of China, Key Projects in the National Science & Technology Pillar Program during the Twelfth Five-Year Plan Period (no. 2012BAK16B02), Shanghai Postdoctoral Scientific Program (no. 14R21423000), and the Science and Technology Development Project of Suzhou (no. SZP201304), and conceived and designed the experiments: WT, CX, TL, and CY; performed the experiments: WT and WZ; analyzed the data: WT, ZM, MH, and TL; contributed reagents/materials/analysis tools: CX, GY, LB, and CY; and wrote the manuscript: WT, TL, and CY.

Author Disclosure Statement

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Luyang Tao or Yijiu Chen.

Additional information

Tao Wang and Xiping Chen contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, T., Chen, X., Wang, Z. et al. Poloxamer-188 Can Attenuate Blood–Brain Barrier Damage to Exert Neuroprotective Effect in Mice Intracerebral Hemorrhage Model. J Mol Neurosci 55, 240–250 (2015). https://doi.org/10.1007/s12031-014-0313-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-014-0313-8

Keywords

Navigation