Skip to main content

Advertisement

Log in

Influence of Terminal Differentiation and PACAP on the Cytokine, Chemokine, and Growth Factor Secretion of Mammary Epithelial Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Pituitary adenylate cyclase-activating polypeptide (PACAP), a neuropeptide with trophic and cytoprotective effects, has been shown to affect cell survival, proliferation, and also differentiation of various cell types. The high PACAP level in the milk and its changes during lactation suggest a possible effect of PACAP on the differentiation of mammary epithelial cells. Mammary cell differentiation is regulated by hormones, growth factors, cytokines/chemokines, and angiogenic proteins. In this study, differentiation was hormonally induced by lactogenic hormones in confluent cultures of HC11 mouse mammary epithelial cells. We investigated the effect of PACAP on mammary cell differentiation as well as release of cytokines, chemokines, and growth factors. Differentiation was assessed by expression analysis of the milk protein β-casein. Differentiation significantly decreased the secretion of interferon gammainduced protein (IP)-10, “regulated upon activation normal T cell expressed and presumably secreted” (RANTES), insulin-like growth factor-binding protein (IGFBP)-3 and the epidermal growth factor receptor (EGFR) ligands, such as epidermal growth factor (EGF) and amphiregulin (AREG). The changes in the levels of IP-10 and RANTES may be relevant for the alterations in homing of T cells and B cells at different stages of mammary gland development, while the changes of the EGFR ligands may facilitate the switch from proliferative to lactating stage. PACAP did not modulate the expression of β-casein or the activity of hormone-induced pathways as determined by the analysis of phosphorylation of Akt, STAT5, and p38 MAPK. However, PACAP decreased the release of EGF and AREG from non-differentiated cells. This may influence the extracellular signal-related transactivation of EGFR in the non-differentiated mammary epithelium and is considered to have an impact on the modulation of oncogenic EGFR signaling in breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ADAM17:

A disintegrin and metalloprotease 17

AREG:

Amphiregulin

cAMP:

Cyclic adenosine monophosphate

CTGF:

Connective tissue growth factor

EGF:

Epidermal growth factor

EGFR:

Epidermal growth factor receptor

FGF:

Fibroblast growth factor

G-CSF:

Granulocyte colony-stimulating factor

HGF:

Hepatocyte growth factor

IGF:

Insulin-like growth factor

IGFBP:

Insulin-like growth factor-binding protein

IL:

Interleukin

IL-1ra:

Interleukin 1 receptor antagonist

IP-10:

Interferon gamma-induced protein 10

JAK:

Janus kinase

M-CSF:

Macrophage colony-stimulating factor

p38 MAPK:

p38 Mitogen-activated protein kinases

PACAP:

Pituitary adenylate cyclase-activating polypeptide

PDGF:

Platelet-derived growth factor

PKA:

Protein Kinase A

PRL:

Prolactin

PTHLH:

Parathyroid hormone-like hormone

RANK-L:

Receptor activator of NF-kB ligand

RANTES:

Regulated upon activation normal T cell expressed and presumably secreted

STAT:

Signal transducer and activator of transcription

TIMP:

Tissue inhibitor of metalloproteinase

TGF:

Transforming growth factor

TNF:

Tumor necrosis factor

VEGF:

Vascular endothelial growth factor

VIP:

Vasoactive intestinal peptide

References

  • Allar MA, Wood TL (2004) Expression of the insulin-like growth factor binding proteins during postnatal development of the murine mammary gland. Endocrinology 145:2467–2477

    Article  CAS  PubMed  Google Scholar 

  • Angiolillo AL, Sgadari C, Taub DD et al (1995) Human interferon-inducible protein 10 is a potent inhibitor of angiogenesis in vivo. J Exp Med 182:155–162

    Article  CAS  PubMed  Google Scholar 

  • Ball RK, Friis RR, Schoenenberger CA, Doppler W, Groner B (1988) Prolactin regulation of beta-casein gene expression and of a cytosolic 120-kd protein in a cloned mouse mammary epithelial cell line. EMBO J 7:2089–2095

    CAS  PubMed  Google Scholar 

  • Berlato C, Doppler W (2009) Selective response to insulin versus insulin-like growth factor-I and -II and up-regulation of insulin receptor splice variant B in the differentiated mouse mammary epithelium. Endocrinology 150:2924–2933

    Article  CAS  PubMed  Google Scholar 

  • Borzsei R, Mark L, Tamas A et al (2009) Presence of pituitary adenylate cyclase activating polypeptide-38 in human plasma and milk. Eur J Endocrinol 160:561–565

    Article  CAS  PubMed  Google Scholar 

  • Brisken C, O’Malley B (2010) Hormone action in the mammary gland. Cold Spring Harb Perspect Biol 2:a003178

    Article  CAS  PubMed  Google Scholar 

  • Brubel R, Reglodi D, Jambor E et al (2011) Investigation of pituitary adenylate cyclase activating polypeptide in human gynecological and other biological fluids by using MALDI TOF mass spectrometry. J Mass Spectrom 46:189–194

    Article  CAS  PubMed  Google Scholar 

  • Castorina A, Tiralongo A, Giunta S, Carnazza ML, Rasi G, D’Agata V (2008) PACAP and VIP prevent apoptosis in schwannoma cells. Brain Res 1241:29–35

    Article  CAS  PubMed  Google Scholar 

  • Cazillis M, Gonzalez BJ, Billardon C et al (2004) VIP and PACAP induce selective neuronal differentiation of mouse embryonic stem cells. Eur J Neurosci 19:798–808

    Article  PubMed  Google Scholar 

  • Csanaky K, Banki E, Szabadfi K et al (2012) Changes in PACAP immunoreactivity in human milk and presence of PAC1 receptor in mammary gland during lactation. J Mol Neurosci 48:631–637

    Article  CAS  PubMed  Google Scholar 

  • Delgado M, Garrido E, Martinez C, Leceta J, Gomariz RP (1996) Vasoactive intestinal peptide and pituitary adenylate cyclase-activating polypeptides (PACAP27) and PACAP38) protect CD4+CD8+ thymocytes from glucocorticoid-induced apoptosis. Blood 87:5152–5161

    CAS  PubMed  Google Scholar 

  • Doppler W, Groner B, Ball RK (1989) Prolactin and glucocorticoid hormones synergistically induce expression of transfected rat beta-casein gene promoter constructs in a mammary epithelial cell line. Proc Natl Acad Sci U S A 86:104–108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Garcia-Fernandez MO, Bodega G, Ruiz-Villaespesa A, Cortes J, Prieto JC, Carmena MJ (2004) PACAP expression and distribution in human breast cancer and healthy tissue. Cancer Lett 205:189–195

    Article  CAS  PubMed  Google Scholar 

  • Garcia-Fernandez MO, Collado B, Bodega G et al (2005) Pituitary adenylate cyclase-activating peptide/vasoactive intestinal peptide receptors in human normal mammary gland and breast cancer tissue. Gynecol Endocrinol 20:327–333

    Article  CAS  PubMed  Google Scholar 

  • Gilmore JL, Scott JA, Bouizar Z et al (2008) Amphiregulin-EGFR signaling regulates PTHrP gene expression in breast cancer cells. Breast Cancer Res Treat 110:493–505

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Grumolato L, Louiset E, Alexandre D et al (2003) PACAP and NGF regulate common and distinct traits of the sympathoadrenal lineage: effects on electrical properties, gene markers and transcription factors in differentiating PC12 cells. Eur J Neurosci 17:71–82

    Article  PubMed  Google Scholar 

  • Gutierrez-Canas I, Rodriguez-Henche N, Bolanos O, Carmena MJ, Prieto JC, Juarranz MG (2003) VIP and PACAP are autocrine factors that protect the androgen-independent prostate cancer cell line PC-3 from apoptosis induced by serum withdrawal. Br J Pharmacol 139:1050–1058

    Article  CAS  PubMed  Google Scholar 

  • Horvath G, Racz B, Reglodi D et al (2010) Effects of PACAP on mitochondrial apoptotic pathways and cytokine expression in rats subjected to renal ischemia/reperfusion. J Mol Neurosci 42:411–418

    Article  CAS  PubMed  Google Scholar 

  • Ip MM, Shoemaker SF, Darcy KM (1992) Regulation of rat mammary epithelial cell proliferation and differentiation by tumor necrosis factor-alpha. Endocrinology 130:2833–2844

    CAS  PubMed  Google Scholar 

  • Khaled WT, Read EK, Nicholson SE et al (2007) The IL-4/IL-13/Stat6 signalling pathway promotes luminal mammary epithelial cell development. Development 134:2739–2750

    Article  CAS  PubMed  Google Scholar 

  • Kim HJ, Yoon MJ, Lee J, Penninger JM, Kong YY (2002) Osteoprotegerin ligand induces beta-casein gene expression through the transcription factor CCAAT/enhancer-binding protein beta. J Biol Chem 277:5339–5344

    Article  CAS  PubMed  Google Scholar 

  • Koppan M, Varnagy A, Reglodi D et al (2012) Correlation between oocyte number and follicular fluid concentration of pituitary adenylate cyclase-activating polypeptide (PACAP) in women after superovulation treatment. J Mol Neurosci 48:617–622

    Article  CAS  PubMed  Google Scholar 

  • Latini S, Chiarpotto M, Muciaccia B et al (2010) Inhibitory effect of pituitary adenylate cyclase activating polypeptide on the initial stages of rat follicle development. Mol Cell Endocrinol 320:34–44

    Article  CAS  PubMed  Google Scholar 

  • Le SV, Yamaguchi DJ, McArdle CA, Tachiki K, Pisegna JR, Germano P (2002) PAC1 and PACAP expression, signaling, and effect on the growth of HCT8, human colonic tumor cells. Regul Pept 109:115–125

    Article  CAS  PubMed  Google Scholar 

  • Leivonen SK, Lazaridis K, Decock J, Chantry A, Edwards DR, Kähäri VM (2013) TGF-β-elicited induction of tissue inhibitor of metalloproteinases (TIMP)-3 expression in fibroblasts involves complex interplay between Smad3, p38α, and ERK1/2. PLoS One 8:e57474

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Luetteke NC, Qiu TH, Fenton SE et al (1999) Targeted inactivation of the EGF and amphiregulin genes reveals distinct roles for EGF receptor ligands in mouse mammary gland development. Development 126:2739–2750

    CAS  PubMed  Google Scholar 

  • McBryan J, Howlin J, Napoletano S, Martin F (2008) Amphiregulin: role in mammary gland development and breast cancer. J Mammary Gland Biol Neoplasia 13:159–169

    Article  PubMed  Google Scholar 

  • Michie CA, Tantscher E, Schall T, Rot A (1998) Physiological secretion of chemokines in human breast milk. Eur Cytokine Netw 9:123–129

    CAS  PubMed  Google Scholar 

  • Monaghan TK, MacKenzie CJ, Plevin R, Lutz EM (2008) PACAP-38 induces neuronal differentiation of human SH-SY5Y neuroblastoma cells via cAMP-mediated activation of ERK and p38 MAP kinases. J Neurochem 104:74–88

    CAS  PubMed Central  PubMed  Google Scholar 

  • Moody TW, Osefo N, Nuche-Berenguer B, Ridnour L, Wink D, Jensen RT (2012) Pituitary adenylate cyclase-activating polypeptide causes tyrosine phosphorylation of the epidermal growth factor receptor in lung cancer cells. J Pharmacol Exp Ther 341:873–881

    Article  CAS  PubMed  Google Scholar 

  • Morrison BL, Jose CC, Cutler ML (2010) Connective tissue growth factor (CTGF/CCN2) enhances lactogenic differentiation of mammary epithelial cells via integrin-mediated cell adhesion. BMC Cell Biol 11:35

    Article  PubMed Central  PubMed  Google Scholar 

  • Nagakawa O, Junicho A, Akashi T et al (2005) Vasoactive intestinal peptide and pituitary adenylate cyclase activating polypeptide stimulate interleukin-6 production in prostate cancer cells and prostatic epithelial cells. Oncol Rep 13:1217–1221

    CAS  PubMed  Google Scholar 

  • Nagata A, Tanaka T, Minezawa A et al (2009) cAMP activation by PACAP/VIP stimulates IL-6 release and inhibits osteoblastic differentiation through VPAC2 receptor in osteoblastic MC3T3 cells. J Cell Physiol 221:75–83

    Article  CAS  PubMed  Google Scholar 

  • Naylor MJ, Ginsburg E, Iismaa TP, Vonderhaar BK, Wynick D, Ormandy CJ (2003) The neuropeptide galanin augments lobuloalveolar development. J Biol Chem 278:29145–29152

    Article  CAS  PubMed  Google Scholar 

  • Nielsen KM, Chaverra M, Hapner SJ et al (2004) PACAP promotes sensory neuron differentiation: blockade by neurotrophic factors. Mol Cell Neurosci 25:629–641

    Article  CAS  PubMed  Google Scholar 

  • Oka H, Jin L, Kulig E, Scheithauer BW, Lloyd RV (1999) Pituitary adenylate cyclase-activating polypeptide inhibits transforming growth factor-beta1-induced apoptosis in a human pituitary adenoma cell line. Am J Pathol 155:1893–1900

    Article  CAS  PubMed  Google Scholar 

  • Ormandy CJ, Naylor M, Harris J et al (2003) Investigation of the transcriptional changes underlying functional defects in the mammary glands of prolactin receptor knockout mice. Recent Prog Horm Res 58:297–323

    Article  CAS  PubMed  Google Scholar 

  • Pirger Z, Laszlo Z, Hiripi L et al (2010) Pituitary adenylate cyclase activating polypeptide (PACAP) and its receptors are present and biochemically active in the central nervous system of the pond snail Lymnaea stagnalis. J Mol Neurosci 42:464–471

    Article  CAS  PubMed  Google Scholar 

  • Ribatti D, Conconi MT, Nussdorfer GG (2007) Nonclassic endogenous novel regulators of angiogenesis. Pharmacol Rev 59:185–205

    Article  CAS  PubMed  Google Scholar 

  • Schall TJ, Bacon K, Toy KJ, Goeddel DV (1990) Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 347:669–671

    Article  CAS  PubMed  Google Scholar 

  • Skaar TC, Baumrucker CR (1993) Regulation of insulin-like growth factor binding protein secretion by a murine mammary epithelial cell line. Exp Cell Res 209:183–188

    Article  CAS  PubMed  Google Scholar 

  • Skakkebaek M, Hannibal J, Fahrenkrug J (1999) Pituitary adenylate cyclase activating polypeptide (PACAP) in the rat mammary gland. Cell Tissue Res 298:153–159

    Article  CAS  PubMed  Google Scholar 

  • Somogyvári-Vigh A, Reglodi D (2004) Pituitary adenylate cyclase activating polypeptide: a potential neuroprotective peptide. Curr Pharm Des 10:2861–2889

    Article  PubMed  Google Scholar 

  • Spitzer E, Zschiesche W, Binas B, Grosse R, Erdmann B (1995) EGF and TGF alpha modulate structural and functional differentiation of the mammary gland from pregnant mice in vitro: possible role of the arachidonic acid pathway. J Cell Biochem 57:495–508

    Article  CAS  PubMed  Google Scholar 

  • Sternlicht MD, Sunnarborg SW, Kouros-Mehr H, Yu Y, Lee DC, Werb Z (2005) Mammary ductal morphogenesis requires paracrine activation of stromal EGFR via ADAM17-dependent shedding of epithelial amphiregulin. Development 132:3923–3933

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Takahata Y, Takada H, Nomura A, Nakayama H, Ohshima K, Hara T (2003) Detection of interferon-gamma-inducible chemokines in human milk. Acta Paediatr 92:659–665

    Article  CAS  PubMed  Google Scholar 

  • Tan YV, Abad C, Lopez R et al (2009) Pituitary adenylyl cyclase-activating polypeptide is an intrinsic regulator of Treg abundance and protects against experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 106:2012–2017

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tanneau GM, Hibrand-Saint OL, Chevaleyre CC, Salmon HP (1999) Differential recruitment of T- and IgA B-lymphocytes in the developing mammary gland in relation to homing receptors and vascular addressins. J Histochem Cytochem 47:1581–1592

    Article  CAS  PubMed  Google Scholar 

  • Valdehita A, Bajo AM, Schally AV, Varga JL, Carmena MJ, Prieto JC (2008) Vasoactive intestinal peptide (VIP) induces transactivation of EGFR and HER2 in human breast cancer cells. Mol Cell Endocrinol 302:41–48

    Article  PubMed  Google Scholar 

  • Vaudry D, Falluel-Morel A, Bourgault S et al (2009) Pituitary adenylate cyclase-activating polypeptide and its receptors: 20 years after the discovery. Pharmacol Rev 61:283–357

    Article  CAS  PubMed  Google Scholar 

  • Wada Y, Nakamachi T, Endo K et al (2013) PACAP attenuates NMDA-induced retinal damage in association with modulation of the microglia/macrophage status into an acquired deactivation subtype. J Mol Neurosci; 51:493-502

    Google Scholar 

  • Waschek JA (2002) Multiple actions of pituitary adenylyl cyclase activating peptide in nervous system development and regeneration. Dev Neurosci 24:14–23

    Article  CAS  PubMed  Google Scholar 

  • Watanabe J, Nakamachi T, Matsuno R et al (2007) Localization, characterization and function of pituitary adenylate cyclase-activating polypeptide during brain development. Peptides 28:1713–1719

    Article  CAS  PubMed  Google Scholar 

  • Watson CJ, Oliver CH, Khaled WT (2011) Cytokine signalling in mammary gland development. J Reprod Immunol 88:124–129

    Article  CAS  PubMed  Google Scholar 

  • Welte T, Garimorth K, Philipp S, Doppler W (1994) Prolactin-dependent activation of a tyrosine phosphorylated DNA binding factor in mouse mammary epithelial cells. Mol Endocrinol 8:1091–1102

    CAS  PubMed  Google Scholar 

  • Werner H, Koch Y, Fridkin M, Fahrenkrug J, Gozes I (1985) High levels of vasoactive intestinal peptide in human milk. Biochem Biophys Res Commun 133:228–232

    Article  CAS  PubMed  Google Scholar 

  • Zia F, Fagarasan M, Bitar K et al (1995) Pituitary adenylate cyclase activating peptide receptors regulate the growth of non-small cell lung cancer cells. Cancer Res 55:4886–4891

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by PTE-MTA Lendület Program, Arimura Foundation, OTKA K104984, 4.2.2.A-11/1/KONV-2012-0024, and TAMOP 4.2.4.A/2-11-1-2012-0001 (National Excellence Program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dora Reglodi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Csanaky, K., Doppler, W., Tamas, A. et al. Influence of Terminal Differentiation and PACAP on the Cytokine, Chemokine, and Growth Factor Secretion of Mammary Epithelial Cells. J Mol Neurosci 52, 28–36 (2014). https://doi.org/10.1007/s12031-013-0193-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0193-3

Keywords

Navigation