Skip to main content

Advertisement

Log in

Chemokine CCL2 Induces Apoptosis in Cortex Following Traumatic Brain Injury

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

The chemokine C-C motif ligand 2 (CCL2) is an important mediator of neuroinflammation. Released in response to acute injury, ischemia, and neurodegenerative disease, CCL2 binds primarily to the G-protein-coupled chemokine C-C motif receptor 2 (CCR2) to recruit inflammatory cells to sites of tissue damage. Inflammation is thought to have both beneficial and deleterious consequences following traumatic brain injury (TBI), so we investigated CCL2–CCR2 signaling during the post-TBI period to assess possible neurodegenerative and protective actions. Local TBI in adult rat cortex was induced by Feeney’s weight-drop method, and the expression of CCL2 and CCR2 in the tissue around the contusion site was measured by real-time quantitative PCR. Both CCL2 and CCR2 mRNA levels were increased markedly for at least 10 days after injury, peaking on day 3. The CCL2 protein was mainly co-localized with the astroglial marker glial fibrillary acidic protein and CCR2 protein with the neuronal nuclear marker NeuN as revealed by double immunofluorescence staining. A selective CCR2 antagonist, RS504393, reduced TUNEL staining, a marker of apoptosis, and improved performance in the Morris water maze 3 days post-TBI, suggesting that CCL2–CCR2 signaling has deleterious effects on neuronal survival and learning. Targeting the CCL2–CCR2 pathway may provide a novel therapeutic approach for the treatment of TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

TBI:

Traumatic brain injury

CCL2:

Chemokine C-C motif ligand 2

CCR2:

Chemokine C-C motif receptor 2

NeuN:

Neuronal nuclei

GFAP:

Glial fibrillary acidic protein

GAPDH:

Glyceraldehyde-3-phosphate dehydrogenase

References

  • Bales JW, Wagner AK, Kline AE, Dixon CE (2009) Persistent cognitive dysfunction after traumatic brain injury: a dopamine hypothesis. Neurosci Biobehav Rev 33(7):981–1003

    Article  PubMed  CAS  Google Scholar 

  • Banisadr G, Gosselin RD, Mechighel P, Rostène W, Kitabgi P, Mélik Parsadaniantz S (2005) Constitutive neuronal expression of CCR2 chemokine receptor and its colocalization with neurotransmitters in normal rat brain: functional effect of MCP-1/CCL2 on calcium mobilization in primary cultured neurons. J Comp Neurol 492(2):178–192

    Article  PubMed  CAS  Google Scholar 

  • Berman JW, Guida MP, Warren J, Amat J, Brosnan CF (1996) Localization of monocyte chemoattractant peptide-1 expression in the central nervous system in experimental autoimmune encephalomyelitis and trauma in the rat. J Immunol 156(8):3017–3023

    PubMed  CAS  Google Scholar 

  • Blaha GR, Raghupathi R, Saatman KE, McIntosh TK (2000) Brain-derived neurotrophic factor administration after traumatic brain injury in the rat does not protect against behavioral or histological deficits. Neuroscience 99(3):483–493

    Article  PubMed  CAS  Google Scholar 

  • Che X, Ye W, Panga L, Wu DC, Yang GY (2001) Monocyte chemoattractant protein-1 expressed in neurons and astrocytes during focal ischemia in mice. Brain Res 902(2):171–177

    Article  PubMed  CAS  Google Scholar 

  • Clausen F, Hånell A, Israelsson C, Hedin J, Ebendal T, Mir AK, Gram H, Marklund N (2011) Neutralization of interleukin-1β reduces cerebral edema and tissue loss and improves late cognitive outcome following traumatic brain injury in mice. Eur J Neurosci 34(1):110–123

    Article  PubMed  Google Scholar 

  • Dalgard CL, Cole JT, Kean WS, Lucky JJ, Sukumar G, McMullen DC, Pollard HB, Watson WD (2012) The cytokine temporal profile in rat cortex after controlled cortical impact. Front Mol Neurosci 5:6

    Article  PubMed  CAS  Google Scholar 

  • Feeney DM, Boyeson MG, Linn RT, Murray HM, Dail WG (1981) Responses to cortical injury: I. Methodology and local effects of contusions in the rat. Brain Res 211(1):67–77

    Article  PubMed  CAS  Google Scholar 

  • Fujimoto ST, Longhi L, Saatman KE, Conte V, Stocchetti N, McIntosh TK (2004) Motor and cognitive function evaluation following experimental traumatic brain injury. Neurosci Biobehav Rev 28(4):365–378

    Article  PubMed  Google Scholar 

  • Galasso JM, Miller MJ, Cowell RM, Harrison JK, Warren JS, Silverstein FS (2000) Acute excitotoxic injury induces expression of monocyte chemoattractant protein-1 and its receptor, CCR2, in neonatal rat brain. Exp Neurol 165(2):295–305

    Article  PubMed  CAS  Google Scholar 

  • Galindo LT, Filippo TR, Semedo P, Ariza CB, Moreira CM, Camara NO, Porcionatto MA (2011) Mesenchymal stem cell therapy modulates the inflammatory response in experimental traumatic brain injury. Neurol Res Int. doi:10.1155/2011/564089

  • Ge S, Murugesan N, Pachter JS (2009) Astrocyte- and endothelial-targeted CCL2 conditional knockout mice: critical tools for studying the pathogenesis of neuroinflammation. J Mol Neurosci 39(1–2):269–283

    Article  PubMed  CAS  Google Scholar 

  • Glabinski AR, Balasingam V, Tani M, Kunkel SL, Strieter RM, Yong VW, Ransohoff RM (1996) Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury to the brain. J Immunol 156(11):4363–4368

    PubMed  CAS  Google Scholar 

  • Lian H, Shim DJ, Gaddam SS, Rodriguez-Rivera J, Bitner BR, Pautler RG, Robertson CS, Zheng H (2012) IκBα deficiency in brain leads to elevated basal neuroinflammation and attenuated response following traumatic brain injury: implications for functional recovery. Mol Neurodegener 7:47

    Article  PubMed  CAS  Google Scholar 

  • Lloyd E, Somera-Molina K, Van Eldik LJ, Watterson DM, Wainwright MS (2008) Suppression of acute proinflammatory cytokine and chemokine upregulation by post-injury administration of a novel small molecule improves long-term neurologic outcome in a mouse model of traumatic brain injury. J Neuroinflammation 5:28

    Article  PubMed  Google Scholar 

  • Mahad DJ, Ransohoff RM (2003) The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Semin Immunol 15(1):23–32

    Article  PubMed  CAS  Google Scholar 

  • McNair ND (1999) Traumatic brain injury. Nurs Clin North Am 34(3):637–659

    PubMed  CAS  Google Scholar 

  • Muessel MJ, Klein RM, Wilson AM, Berman NE (2002) Ablation of the chemokine monocyte chemoattractant protein-1 delays retrograde neuronal degeneration, attenuates microglial activation, and alters expression of cell death molecules. Brain Res Mol Brain Res 103(1–2):12–27

    Article  PubMed  CAS  Google Scholar 

  • Rhodes JK, Sharkey J, Andrews PJ (2009) The temporal expression, cellular localization, and inhibition of the chemokines MIP-2 and MCP-1 after traumatic brain injury in the rat. J Neurotrauma 26(4):507–525

    Article  PubMed  Google Scholar 

  • Sauerbeck A, Gao J, Readnower R, Liu M, Pauly JR, Bing G, Sullivan PG (2011) Pioglitazone attenuates mitochondrial dysfunction, cognitive impairment, cortical tissue loss, and inflammation following traumatic brain injury. Exp Neurol 227(1):128–135

    Article  PubMed  CAS  Google Scholar 

  • Semple BD, Bye N, Rancan M, Ziebell JM, Morganti-Kossmann MC (2010a) Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice. J Cereb Blood Flow Metab 30(4):769–782

    Article  PubMed  Google Scholar 

  • Semple BD, Frugier T, Morganti-Kossmann MC (2010b) CCL2 modulates cytokine production in cultured mouse astrocytes. J Neuroinflammation 7:67

    Article  PubMed  Google Scholar 

  • Shlosberg D, Benifla M, Kaufer D, Friedman A (2010) Blood–brain barrier breakdown as a therapeutic target in traumatic brain injury. Nat Rev Neurol 6(7):393–403

    Article  PubMed  CAS  Google Scholar 

  • Shojo H, Kaneko Y, Mabuchi T, Kibayashi K, Adachi N, Borlongan CV (2010) Genetic and histologic evidence implicates role of inflammation in traumatic brain injury-induced apoptosis in the rat cerebral cortex following moderate fluid percussion injury. Neuroscience 171(4):1273–1282

    Article  PubMed  CAS  Google Scholar 

  • Sinson G, Perri BR, Trojanowski JQ, Flamm ES, McIntosh TK (1997) Improvement of cognitive deficits and decreased cholinergic neuronal cell loss and apoptotic cell death following neurotrophin infusion after experimental traumatic brain injury. J Neurosurg 86(3):511–518

    Article  PubMed  CAS  Google Scholar 

  • Sozzani S, Zhou D, Locati M, Rieppi M, Proost P, Magazin M, Vita N, van Damme J, Mantovani A (1994) Receptors and transduction pathways for monocyte chemotactic protein-2 and monocyte chemotactic protein-3. Similarities and differences with MCP-1. J Immunol 152(7):3615–3622

    PubMed  CAS  Google Scholar 

  • Tang XQ, Zhuang YY, Zhang P, Fang HR, Zhou CF, Gu HF, Zhang H, Wang CY (2013) Formaldehyde impairs learning and memory involving the disturbance of hydrogen sulfide generation in the hippocampus of rats. J Mol Neurosci 49(1):140–149

    Article  PubMed  CAS  Google Scholar 

  • Thau-Zuchman O, Shohami E, Alexandrovich AG, Leker RR (2012) Combination of vascular endothelial and fibroblast growth factor 2 for induction of neurogenesis and angiogenesis after traumatic brain injury. J Mol Neurosci 47(1):166–172

    Article  PubMed  CAS  Google Scholar 

  • Umehara F, Izumo S, Takeya M, Takahashi K, Sato E, Osame M (1996) Expression of adhesion molecules and monocyte chemoattractant protein-1 (MCP-1) in the spinal cord lesions in HTLV-I-associated myelopathy. Acta Neuropathol 91(4):343–350

    Article  PubMed  CAS  Google Scholar 

  • Van Der Voorn P, Tekstra J, Beelen RH, Tensen CP, Van Der Valk P, De Groot CJ (1999) Expression of MCP-1 by reactive astrocytes in demyelinating multiple sclerosis lesions. Am J Pathol 154(1):45–51

    Article  Google Scholar 

  • Wain JH, Kirby JA, Ali S (2009) Leucocyte chemotaxis: examination of mitogen-activated protein kinase and phosphoinositide 3-kinase activation by monocyte chemoattractant proteins-1, -2, -3 and -4. Clin Exp Immunol 127(3):436–444

    Article  Google Scholar 

  • Wang GH, Jiang ZL, Li YC, Li X, Shi H, Gao YQ, Vosler PS, Chen J (2011) Free-radical scavenger edaravone treatment confers neuroprotection against traumatic brain injury in rats. J Neurotrauma 28(10):2123–2134

    Article  PubMed  Google Scholar 

  • Weber JT (2004) Calcium homeostasis following traumatic neuronal injury. Curr Neurovasc Res 1(2):151–171

    Article  PubMed  Google Scholar 

  • Werner C, Engelhard K (2007) Pathophysiology of traumatic brain injury. Br J Anaesth 99(1):4–9

    Article  PubMed  CAS  Google Scholar 

  • Xiong Y, Mahmood A, Chopp M (2010) Neurorestorative treatments for traumatic brain injury. Discov Med 10(54):434–442

    PubMed  Google Scholar 

  • Zhang ZJ, Dong YL, Lu Y, Cao S, Zhao ZQ, Gao YJ (2012) Chemokine CCL2 and its receptor CCR2 in the medullary dorsal horn are involved in trigeminal neuropathic pain. J Neuroinflammation 9:136

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, S., Zhang, L., Wu, Q. et al. Chemokine CCL2 Induces Apoptosis in Cortex Following Traumatic Brain Injury. J Mol Neurosci 51, 1021–1029 (2013). https://doi.org/10.1007/s12031-013-0091-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-013-0091-8

Keywords

Navigation