Skip to main content

Advertisement

Log in

Astrocyte- and Endothelial-Targeted CCL2 Conditional Knockout Mice: Critical Tools for Studying the Pathogenesis of Neuroinflammation

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

While the expression of the C–C chemokine ligand 2 (CCL2) in the central nervous system (CNS) is associated with numerous neuroinflammatory conditions, the critical cellular sources of this chemokine, which is responsible for disease processes—as well as associated pathogenic mechanisms, remain unresolved. As the potential for anti-CCL2 therapeutics in treating neuroinflammatory disease is likely to be contingent upon effective drug delivery to the source(s) and/or target(s) of CCL2 action in the CNS, tools to highlight the course of CCL2 action during neuroinflammation are imperative. In response to this need, we used the Cre/loxP and FLP-FRT recombination system to develop the first two, cell-conditional CCL2 knockout mice—separately targeting CCL2 gene elimination to astrocytes and endothelial cells, both of which have been considered to play crucial though undefined roles in neuroinflammatory disease. Specifically, mice containing a floxed CCL2 allele were intercrossed with GFAP-Cre or Tie2-Cre transgenic mice to generate mice with CCL2-deficient astrocytes (astrocyte KO) or endothelial cells (endothelial KO), respectively. Polymerase chain reaction, reverse transcription polymerase chain reaction/quantitative reverse transcriptase polymerase chain reaction, and enzyme-linked immunosorbent assay of CCL2 gene, RNA, and protein, respectively, from cultured astrocytes and brain microvascular endothelial cells (BMEC) established the efficiency and specificity of the CCL2 gene deletions and a CCL2 null phenotype in these CNS cells. Effective cell-conditional knockout of CCL2 was also confirmed in an in vivo setting, wherein astrocytes and BMEC were retrieved by immune-guided laser capture microdissection from their in situ positions in the brains of mice experiencing acute, lipopolysaccharide-mediated endotoxemia to induce CCL2 gene expression. In vivo analysis further revealed apparent cross-talk between BMEC and astrocytes regarding the regulation of astrocyte CCL2 expression. Use of astrocyte KO and endothelial KO mice should prove critical in elaborating the pathogenic mechanisms of and optimizing the treatments for neuroinflammatory disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Abbott, N. J. (2000). Inflammatory mediators and modulation of blood–brain barrier permeability. Cellular and Molecular Neurobiology, 20, 131–147.

    Article  PubMed  CAS  Google Scholar 

  • Abbott, N. J. (2006). Astrocyte–endothelial interactions at the blood–brain barrier. Nature Reviews. Neuroscience, 7, 41–53.

    Article  PubMed  CAS  Google Scholar 

  • Adamus, G., Machnicki, M., Amundson, D., Adlard, K., & Offner, H. (1997). Similar pattern of CCL2 expression in spinal cords and eyes of Lewis rats with experimental autoimmune encephalomyelitis associated anterior uveitis. Journal of Neuroscience Research, 50, 531–538.

    Article  PubMed  CAS  Google Scholar 

  • Andjelkovic, A. V., & Pachter, J. S. (2000). Characterization of MCP-1 and MIP-1α binding sites along human brain microvessels. Journal of Neurochemistry, 75, 1898–1906.

    Article  PubMed  CAS  Google Scholar 

  • Andjelkovic, A. V., Song, L., Dzenko, K. A., Cong, H., & Pachter, J. S. (2002). Functional expression of CCR2 by human fetal astrocytes. Journal of Neuroscience Research, 70, 219–231.

    Article  PubMed  CAS  Google Scholar 

  • Anghelina, M., Moldovan, L., & Moldovan, N. I. (2005). Preferential activity of Tie2 promoter in arteriolar endothelium. Journal of Cellular and Molecular Medicine, 9, 113–121.

    Article  PubMed  CAS  Google Scholar 

  • Babcock, A. A., Kuziel, W. A., Rivest, S., & Owens, T. (2003). Chemokine expression by glial cells directs leukocytes to sites of axonal injury. Journal of Neuroscience, 23, 7922–7930.

    PubMed  CAS  Google Scholar 

  • Bachoo, R. M., Kim, R. S., Ligon, K. L., Maher, E. A., Brennan, C., Billings, N., et al. (2004). Molecular diversity of astrocytes with implications for neurological diseases. Proceedings of the National Academy of Sciences of the United States of America, 101, 8384–8389.

    Article  PubMed  CAS  Google Scholar 

  • Bechmann, I., Galea, I., & Perry, V. H. (2007). What is the blood–brain barrier (not)? Trends in Immunology, 28, 5–11.

    Article  PubMed  CAS  Google Scholar 

  • Bennett, J. L., Elhofy, A., Canto, M. C., Tani, M., Ransohoff, R. M., & Karpus, W. J. (2003). CCL2 transgene expression in the central nervous system directs diffuse infiltration of CD45(hi) CD11b(+) monocytes and enhanced Theiler's murine encephalomyelitis virus-induced demyelinating disease. Journal of Neurovirology, 9, 623–636.

    Article  PubMed  CAS  Google Scholar 

  • Berman, J. W., Guida, M. P., Warren, J., Amat, J., & Brosnan, C. F. (1996). Localization of monocyte chemoattractant protein-1 expression in the central nervous system in experimental autoimmune encephalomyelitis and trauma in the rat. Journal of Immunology, 156, 3017–3023.

    CAS  Google Scholar 

  • Carpentier, P. A., Begolka, W. S., Olson, J. E., Elhofy, A., Karpus, W. J., & Miller, S. D. (2005). Differential activation of astrocytes by innate and adaptive immune stimuli. Glia, 49, 36–374.

    Article  Google Scholar 

  • Celie, J. W. A. M., Rutjkes, N. W. P., Keuning, E. D., Soininen, R., Heljasvaara, R., Pihlajaniemi, T., et al. (2007). Subendothelial heparan sulfate proteoglycans become major L-selectin and monocyte chemoattractant protein-1 ligands upon renal ischemia/reperfusion. American Journal of Pathology, 170, 1865–1878.

    Article  PubMed  CAS  Google Scholar 

  • Choi, Y. K., & Kim, K.-W. (2008). Blood–neural barrier: its diversity and coordinated cell-to-cell communication. BMB Reports, 41, 345–352.

    PubMed  CAS  Google Scholar 

  • Crane, I. J., Wallace, C. A., McKillop-Smith, S., & Forrester, J. V. (2000). Control of chemokine production at the blood–brain barrier. Immunology, 101, 426–433.

    Article  PubMed  CAS  Google Scholar 

  • Dawson, J., Miltz, W., Mir, A. K., & Wiessner, C. (2003). Targeting monocyte chemoattractant protein-1 signaling in disease. Expert Opinion on Therapeutic Targets, 7, 35–48.

    Article  PubMed  CAS  Google Scholar 

  • dos Santos, A. C., Barsante, M. M., Arantes, R. M. E., Bernard, C. C. A., Teixeira, M. M., & Carvalho-Tavares, J. (2005). CCL2 and CCL5 mediate leukocyte adhesion in experimental autoimmune encephalomyelitis–an intravital microscopy study. Journal of Neuroimmunology, 162, 122–129.

    Article  PubMed  CAS  Google Scholar 

  • Elhofy, A., Wang, J., Tani, M., Fife, B. T., Kennedy, K. J., Bennet, J., et al. (2005). Transgenic expression of CCL2 in the central nervous system prevents experimental autoimmune encephalomyelitis. Journal of Leukocyte Biology, 77, 229–237.

    Article  PubMed  CAS  Google Scholar 

  • Fuentes, M. E., Durham, S. K., Swerdel, M. R., Lewin, A. C., Barton, D. S., Megill, J. R., et al. (1995). Controlled recruitment of monocytes and macrophages to specific organs through transgenic expression of monocyte chemoattractant protein-1. Journal of Immunology, 155, 5769–5776.

    CAS  Google Scholar 

  • Fujioka, T., Purev, E., & Rostami, A. (1999). Chemokine mRNA expression in the cauda equina of Lewis rats with experimental allergic neuritis. Journal of Neuroimmunology, 97, 51–59.

    Article  PubMed  CAS  Google Scholar 

  • Ge, S., & Pachter, J. S. (2004). Caveolin-1 knockdown by small interfering RNA suppresses responses to the chemokine MCP-1 by human astrocytes. Journal of Biological Chemistry, 279, 6688–6695.

    Article  PubMed  CAS  Google Scholar 

  • Ge, S., Song, L., & Pachter, J. S. (2005). Where is the blood–brain barrier…really? Journal of Neuroscience Research, 79, 421–427.

    Article  PubMed  CAS  Google Scholar 

  • Ge, S., Song, L., Serwanski, D., Kuziel, W. A., & Pachter, J. S. (2008). Transcellular transport of CCL2 across brain microvascular endothelial cells. Journal of Neurochemistry, 104, 1219–1232.

    Article  PubMed  CAS  Google Scholar 

  • Gerszten, R. E., Garcia-Zapeda, E. A., Lim, Y.-C., Yoshida, M., Ding, H., Gimbrone, M. A., et al. (1999). MCP-1 and IL-8 trigger firm adhesion of monocytes to vascular endothelium under flow conditions. Nature, 398, 718–723.

    Article  PubMed  CAS  Google Scholar 

  • Glabinski, A. R., Tani, M., Tuohy, V. K., Tuthill, R. J., & Ransohoff, R. M. (1995). Central nervous system chemokine mRNA accumulation follows initial leukocyte entry at the onset of acute murine experimental autoimmune encephalomyelitis. Brain, Behavior, and Immunity, 9, 315–330.

    Article  PubMed  CAS  Google Scholar 

  • Glabinski, A. R., Balasingam, V., Tani, M., Kunkel, S. L., Streiter, R. M., Yong, V. W., et al. (1996). Chemokine monocyte chemoattractant protein-1 is expressed by astrocytes after mechanical injury the brain. Journal of Immunology, 156, 4363–4368.

    CAS  Google Scholar 

  • Hamann, I., Zipp, F., & Infante-Duarte, C. (2008). Therapeutic targeting of chemokine signaling in multiple sclerosis. Journal of the Neurological Sciences. doi:10.1016/j.jns.2008.07.005.

    PubMed  Google Scholar 

  • Hamby, M. E., Uliasz, T. F., Hewett, S. J., & Hewett, J. A. (2004). Characterization of an improved procedure for the removal of microglia from confluent monolayers of primary astrocytes. Journal of Neuroscience Methods, 150, 128–137.

    Article  CAS  Google Scholar 

  • Handel, T. M., Johnson, Z., Rodrigues, D. H., dos Santos, A. C., Cirillo, R., Muzio, V., et al. (2008). An engineered monomer of CCL2 has anti-inflammatory properties emphasizing the importance of oligomerization for chemokine activity in vivo. Journal of Leukocyte Biology, 84, 1101–1108.

    Article  PubMed  CAS  Google Scholar 

  • Harkness, K. A., Sussman, J. D., Davies-Jones, G. A., Greenwood, J., & Woodroofe, M. N. (2003). Cytokine regulation of MCP-1 expression in brain and retinal microvascular endothelial cells. Journal of Neuroimmunology, 142, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Hayashi, M., Luo, Y., Laning, J., Streiter, R. M., & Dorf, M. E. (1995). Production and function of monocyte chemoattractant protein and other beta-chemokines in murine glial cells. Journal of Neuroimmunology, 60, 143–150.

    Article  PubMed  CAS  Google Scholar 

  • Heesen, M., Tanabe, S., Berman, M. A., Yoshizawa, I., Luo, Y., Kim, R. J., et al. (1996). Mouse astrocytes respond to the chemokines MCP-1 and KC, but reverse transcriptase-polymerase chain reaction does not detect mRNA for the KC or new MCP-1 receptor. Journal of Neuroscience Research, 45, 382–391.

    Article  PubMed  CAS  Google Scholar 

  • Huang, D., Wang, J., Kivisakk, P., Rollins, B. J., & Ransohoff, R. M. (2001). Absence of monocyte chemoattractant protein-1 in mice leads to decreased local macrophage recruitment and antigen-specific T helper cell type 1 immune response in experimental autoimmune encephalomyelitis. Journal of Experimental Medicine, 193, 713–725.

    Article  PubMed  CAS  Google Scholar 

  • Huang, D., Tani, M., Wang, J., Han, Y. T. T., Weaver, J., Charo, I. F., et al. (2002). Pertussis toxin-induced reversible encephalopathy dependent on monocyte chemoattractant protein-1 overexpression in mice. Journal of Neuroscience, 22, 10633–10642.

    PubMed  CAS  Google Scholar 

  • Huang, D., Wujek, J., Kidd, G., He, T. T., Cardona, A., Sasse, M. E., et al. (2005). Chronic expression of monocyte chemoattractant protein-1 in the central nervous system causes delayed encephalopathy and impaired microglial function in mice. FASEB Journal, 19, 761–772.

    Article  PubMed  CAS  Google Scholar 

  • Hughes, P. M., Alegrini, P. R., Rudin, M., Perry, V. H., Mir, A. K., & Wiessner, C. (2002). Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. Journal of Cerebral Blood Flow and Metabolism, 22, 308–317.

    PubMed  CAS  Google Scholar 

  • Hulkower, K., Brosnan, C. F., Acquino, D. A., Cammer, W., Kulshrestha, S., Guida, M. P., et al. (1993). Expression of CSF-1, c-fms, and MCP-1 in the central nervous system of rats with experimental allergic encephalomyelitis. Journal of Immunology, 150, 2525–2533.

    CAS  Google Scholar 

  • Infante-Duarte, C., Waiczies, S., Weurfel, J., & Zipp, F. (2008). New developments in understanding and treating neuroinflammation. Journal of Molecular Medicine, 86, 975–985.

    Article  PubMed  CAS  Google Scholar 

  • Jovanova-Nesic, K., & Shoenfeld, Y. (2007). Autoimmunity in the brain: the pathogenesis insight from cell biology. Annals of the New York Academy of Sciences, 1107, 142–154.

    Article  PubMed  CAS  Google Scholar 

  • Kalinowska, A., & Losy, J. (2008). Investigational C–C chemokine receptor 2 antagonists for the treatment of autoimmune diseases. Expert Opinion on Investigational Drugs, 17, 1267–1279.

    Article  PubMed  CAS  Google Scholar 

  • Karpus, W. B., Fife, B. T., & Kennedy, K. J. (2003). Immunoneutralization of chemokines for the prevention and treatment of central nervous system autoimmune disease. Methods, 29, 362–368.

    Article  PubMed  CAS  Google Scholar 

  • Kim, K. S. (1996). Cytokines and adhesion molecules in stroke and related diseases. Journal of Neurological Sciences, 137, 69–78.

    Article  CAS  Google Scholar 

  • Kinnecom, K., and Pachter, J.S. (2005). Selective capture of endothelial and perivascular cells from brain microvessels using laser capture microdissection. Brain Research Protocols, 16, 1–9.

    Article  PubMed  CAS  Google Scholar 

  • Kipp, M., Norkute, A., Johann, S., Lorenz, L., Braun, S., Hieble, A., et al. (2008). Brain-region-specific astroglial responses in vitro after LPS exposure. Journal of Molecular Neuroscience, 35, 235–243.

    Article  PubMed  CAS  Google Scholar 

  • Koni, P. A., Joshi, S. K., Temann, U. A., Olson, D., Burkly, L., & Flavell, R. A. (2001). Conditional vascular cell adhesion molecule-1 deletion in mice: impaired lymphocyte migration to bone marrow. Journal of Experimental Medicine, 193, 741–754.

    Article  PubMed  CAS  Google Scholar 

  • Krasnowska-Zoladek, A., Banaszewska, M., Kraszpulski, M., & Konat, G. W. (2007). Kinetics of inflammatory response of astrocytes induced by TLR3 and TLR4 ligation. Journal of Neuroscience Research, 85, 205–212.

    Article  CAS  Google Scholar 

  • Kunkel, S. L., Standiford, T., Kasahara, K., & Streiter, R. M. (1991). Stimulus specific induction of monocyte chemoattractant protein-1 (MCP-1) gene expression. Advances in Experimental Medicine and Biology, 305, 65–71.

    PubMed  CAS  Google Scholar 

  • Larhtz, F., Piali, L., Spanaus, K. S., Seebach, J., & Fontana, A. (1998). Chemokines and chemotaxis of leukocytes in infectious meningitis. Journal of Neuroimmunology, 85, 33–43.

    Article  Google Scholar 

  • Lau, E. K., Paavola, C. D., Johnson, Z., Gaudry, J.-P., Geretti, E., Borlat, F., et al. (2004). Identification of the glycosaminoglycan binding site of the CC chemokine, CCL2: implications for structure and function in vivo. Journal of Biological Chemistry, 279, 22294–222305.

    Article  PubMed  CAS  Google Scholar 

  • Lee, Y., Su, M., Messing, A., & Brenner, M. (2006). Astrocyte heterogeneity revealed by expression of a FAFP-LacZ transgene. Glia, 53, 677–687.

    Article  PubMed  Google Scholar 

  • Leonard, E., & Yoshimura, T. (1990). Human monocyte chemoattractant protein-1 (MCP-1). Immunology Today, 11, 97–101.

    Article  PubMed  CAS  Google Scholar 

  • Macdonald, J.A., Murugesan, N., and Pachter, J.S.(2008). Validation of immuno-laser capture microdissection coupled with quantitative RT-PCR to probe blood-brain barrier gene expression in situ. Journal of Neuroscience Methods, 174, 219–226.

    Article  PubMed  CAS  Google Scholar 

  • McManus, C., Berman, J. W., Brett, F. M., Staunton, H., Farrell, M., & Brosnan, C. F. (1998). CCL2, MCP-2 and MCP-3 expression in multiple sclerosis lesions: an immunohistochemical and in situ hybridization study. Journal of Neuroimmunology, 86, 20–29.

    Article  PubMed  CAS  Google Scholar 

  • Menetski, J., Mistry, S., Lu, M., Mudgett, J. S., Ransohoff, R. M., Demartino, J. A., et al. (2007). Mice overexpressing chemokine ligand 2 (CCL2) in astrocytes display nocioceptive responses. Neuroscience, 149, 706–714.

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuki, S., Kamiya, N., Hori, S., & Terasaki, T. (2005). Vascular endothelium-selective gene induction by Tie2 promoter/enhancer in the brain and retina of a transgenic rat. Pharmaceutical Research, 22, 852–857.

    Article  PubMed  CAS  Google Scholar 

  • Omari, K. M., Chui, R., & Dorivini-Zis, K. (2004). Induction of beta-chemokine secretion by human brain microvessel endothelial cells via CD40/CD40L interactions. Journal of Neuroimmunology, 146, 203–208.

    Article  PubMed  CAS  Google Scholar 

  • Pachter, J. S., de Vries, H. E., & Fabry, Z. (2003). The blood–brain barrier and its role in immune privilege in the central nervous system. Journal of Neuropathology and Experimental Neurology, 62, 593–604.

    PubMed  CAS  Google Scholar 

  • Pardridge, W. M. (2005). The blood–brain barrier and neurotherapeutics. NeuroRx, 2, 1–2.

    Article  PubMed  Google Scholar 

  • Peterson, K. E., Erret, J. S., Wei, T., Dimcheff, D. E., Ransohoff, R., Kuziel, W. A., et al. (2004). MCP-1 and CCR2 contribute to non-lymphocyte-mediated brain disease induced by Fr98 polytropic retrovirus infection in mice: role for astrocytes in retroviral neuropathogenesis. Journal of Virology, 78, 6449–6458.

    Article  PubMed  CAS  Google Scholar 

  • Piccio, L., Rossi, B., Scarpini, E., Laudanna, C., Ciagulli, C., Issekutz, A. C., et al. (2002). Molecular mechanisms involved in lymphocyte recruitment in inflamed brain microvessels: critical roles for P-selectin glycoprotein ligand-1 and heterotrimeric Gi-linked receptors. Journal of Immunology, 168, 1940–1949.

    CAS  Google Scholar 

  • Prat, A., Biernacki, K., Wosik, K., & Antel, J. P. (2001). Glial cell influence on the human blood–brain barrier. Glia, 36, 145–155.

    Article  PubMed  CAS  Google Scholar 

  • Prat, A., Biernacki, K., Lavoie, J. F., Poirier, J., Duquette, P., & Antel, J. P. (2002). Migration of multiple sclerosis lymphocytes through brain endothelium. Archives of Neurology, 59, 391–397.

    Article  PubMed  Google Scholar 

  • Prieschl, E. E., Kulmburg, P. A., & Baumrucker, T. (1995). The nomenclature of chemokines. International Archives of Allergy and Immunology, 107, 475–483.

    Article  PubMed  CAS  Google Scholar 

  • Qin, H., He, J., Hanes, R. N., Pluzarev, O., Hong, J. S., & Crews, F. T. (2008). Increased systemic and brain cytokine production and neuroinflammation by endotoxin following ethanol treatment. Journal of Neuroinflammation, 5, 10–26.

    Article  PubMed  CAS  Google Scholar 

  • Quandt, J., & Dorovini-Zis, K. (2004). The beta chemokines CCL4 and CCL5 enhance adhesion of specific CD4 + T cell subsets to human brain endothelial cells. Journal of Neuropathology and Experimental Neurology, 63, 350–362.

    PubMed  CAS  Google Scholar 

  • Rankine, E. L., Hughes, P. M., Botham, M. S., Perry, V. H., & Felton, L. M. (2006). Brain cytokine synthesis induced by an intraparenchymal injection of LPS is reduced in MCP-1-deficient mice prior to leukocyte recruitment. European Journal of Neuroscience, 24, 77–86.

    Article  PubMed  CAS  Google Scholar 

  • Ransohoff, R. M., Hamilton, T. A., Tani, M., Stoler, M. H., Shick, H. E., Major, J. A., et al. (1993). Astrocyte expression of mRNA encoding cytokines IP-10 and JE/MCP-1 in experimental autoimmune encephalomyelitis. FASEB Journal, 7, 592–600.

    PubMed  CAS  Google Scholar 

  • Rollins, B. J. (1991). JE/MCP-1: an early-response gene encodes a monocyte-specific response. Cancer Cells, 3, 517–524.

    PubMed  CAS  Google Scholar 

  • Rollins, B. J., Walz, A., & Baggiolini, M. (1991). Recombinant human MCP-1/JE induces chemotaxis, calcium flux, and the respiratory burst in human monocytes. Blood, 78, 1112–1116.

    PubMed  CAS  Google Scholar 

  • Sakurai-Yamashita, Y., Shigematsu, K., Yamashita, K., & Niwa, M. (2006). Expression of MCP-1 in the hippocampus of SHRSP with ischemia-related delayed neuronal death. Cellular and Molecular Neurobiology, 26, 823–831.

    Article  PubMed  CAS  Google Scholar 

  • Schober, A. (2008). Chemokines in vascular dysfunction and remodeling. Arteriosclerosis, Thrombosis and Vascular Biology, 28, 1950–1959.

    Article  CAS  Google Scholar 

  • Sequin, R., Biernacki, K., Rotondo, R. L., Prat, A., & Antel, J. P. (2003). Regulation and functional effects of monocyte migration across human brain-derived endothelial cells. Journal of Neuropathology and Experimental Neurology, 62, 412–419.

    Google Scholar 

  • Simpson, J. E., Newcombe, J., Cuzner, M. L., & Woodruffe, M. N. (1998). Expression of monocyte chemoattractant protein and other beta chemokines by resident glia and inflammatory cells in multiple sclerosis lesions. Journal of Neuroimmunology, 84, 238–249.

    Article  PubMed  CAS  Google Scholar 

  • Singh, A. K., & Jiang, Y. (2004). How does peripheral lipopolysaccharide induce gene expression in the brain of rats? Toxicology, 201, 197–207.

    Article  PubMed  CAS  Google Scholar 

  • Sixt, M., Engelhardt, B., Pausch, F., Hallman, R., Wendler, O., & Sorokin, L. M. (2001). Endothelial cell laminin isoforms, laminins 8 and 10, play decisive roles in T cell recruitment across the blood–brain barrier in experimental autoimmune encephalitis. Journal of Cell Biology, 153, 933–945.

    Article  PubMed  CAS  Google Scholar 

  • So, E. Y., Kang, M. H., & Kim, B. S. (2006). Induction of chemokine and cytokine genes in astrocytes following infection with Theiler's murine encephalomyelitis virus is mediated by the Toll-like receptor 3. Glia, 53, 858–867.

    Article  PubMed  Google Scholar 

  • Song, L., & Pachter, J. S. (2003). Culture of murine brain microvascular endothelial cells that maintain expression and cytoskeletal association of tight junction-associated proteins. In Vitro Cellular and Developmental Biology. Animal, 39, 313–320.

    Article  PubMed  CAS  Google Scholar 

  • Song, L., & Pachter, J. S. (2004). Monocyte chemoattractant protein-1 alters expression of tight junction-associated proteins in brain microvascular endothelial cells. Microvascular Research, 67, 78–89.

    Article  PubMed  CAS  Google Scholar 

  • Song, L., Ge, S., & Pachter, J. S. (2007). Caveolin-1 regulates expression of junction-associated proteins in microvascular endothelial cells. Blood, 109, 1515–1523.

    Article  PubMed  CAS  Google Scholar 

  • Sun, J., Zheng, J. H., Zhao, M., Lee, S., & Goldstein, H. (2008). Increased in vivo activation of microglia and astrocytes in the brains of mice transgenic for an infectious R54 human immunodeficiency type 1 provirus and for CD4-specific expression of human cyclin T1 in response to stimulation by lipopolysaccharides. Journal of Virology, 82, 5562–5572.

    Article  PubMed  CAS  Google Scholar 

  • Thibeault, I., Laflamme, N., & Rivest, S. (2001). Regulation of the gene encoding the monocyte chemoattractant protein 1 (MCP-1) in the mouse and rat brain in response to LPS and proinflammatory cytokines. Journal of Comparative Neurology, 434, 461–477.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, W. L., Karpus, W. J., & Van Eldik, L. J. (2008). MCP-1-deficient mice show reduced neuroinflammatory responses and increased peripheral inflammatory responses to peripheral endotoxin insult. Journal of Neuroinflammation, 5, 35–48.

    Article  PubMed  CAS  Google Scholar 

  • Thurston, G., Baluk, P., & McDonald, D. M. (2000). Determinants of endothelial cell phenotype in venules. Microcirculation, 7, 67–80.

    Article  PubMed  CAS  Google Scholar 

  • Toborek, M., Lee, Y. W., Pu, H., Malecki, A., Flora, G., Garrido, R., et al. (2003). HIV-Tat protein induces oxidative and inflammatory pathways in brain endothelium. Journal of Neurochemistry, 84, 169–179.

    Article  PubMed  CAS  Google Scholar 

  • Van der Voorn, P., Tekstra, J., Beelen, R. H., Tensen, C. P., Van, D. V., & De, G. C. (1999). Expression of CCL2 by reactive astrocytes in demyelinating multiple sclerosis lesions. American Journal of Pathology, 154, 45–51.

    Google Scholar 

  • van Horssen, J., Bo, L., Vos, C. M. P., Virtanen, I., & de Vries, H. E. (2005). Basement membrane proteins in multiple sclerosis-associated inflammatory cuffs: potential role in influx and transport of leukocytes. Journal of Neuropathology and Experimental Neurology, 64, 722–729.

    Article  PubMed  Google Scholar 

  • Wang, X., & Feuerstein, G. Z. (1995). Induced expression of adhesion molecules following focal brain ischemia. Journal of Neurotrauma, 12, 825–832.

    Article  PubMed  CAS  Google Scholar 

  • Xaio, H., Banks, W. A., Niehoff, M. L., & Morley, J. E. (2001). Effect of LPS on the permeability of the blood–brain barrier to insulin. Brain Research, 896, 36–42.

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto, M., Horiba, M., Buescher, J. L., Huang, D., Gendelman, H. E., Ransohoff, R. M., et al. (2005). Overexpression of monocyte chemoattractant protein-1/CCL2 in beta-amyloid precursor protein transgenic mice show accelerated diffuse amyloid deposition. American Journal of Pathology, 166, 1475–1485.

    PubMed  CAS  Google Scholar 

  • Yoshimura, T., Takeya, M., Takahashi, K., Kuratsu, J., & Leonard, E. J. (1991). Production and characterization of mouse monoclonal antibodies against human monocyte chemoattractant protein-1. Journal of Immunology, 147, 2229–2233.

    CAS  Google Scholar 

  • Zernecke, A., & Weber, C. (2005). Inflammatory mediators in atherosclerotic vascular disease. Basic Research in Cardiology, 100, 93–101.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, W., Smith, C., Howlett, C., & Stanimirovic, D. (2000). Inflammatory activation of human brain endothelial cells by hypoxic astrocytes in vitro is mediated by IL-1beta. Journal of Cerebral Blood Flow and Metabolism, 20, 967–978.

    PubMed  CAS  Google Scholar 

  • Zhou, H., Lapointe, B. M., Clark, S. R., Zbytnuik, L., & Kubes, P. (2006). A requirement for microglial TLR4 in leukocyte recruitment into brain in response to lipopolysaccharide. Journal of Immunology, 177, 8103–8110.

    CAS  Google Scholar 

  • Zhuo, L., Theis, M., Alvarez-Maya, I., Brenner, M., Willecke, K., & Messing, A. (2001). hGFAP-cre transgenic mice for manipulation of glial and neuronal function in vivo. Genesis, 31, 85–94.

    Article  PubMed  CAS  Google Scholar 

  • Zuurman, M. W., Heeroma, J., Brouer, N., Boddeke, H. W., & Biber, K. (2003). LPS-induced expression of a novel chemokine receptor (L-CCR) in mouse glial cells in vitro and in vivo. Glia, 41, 327–336.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants PP-1215 from the National Multiple Sclerosis Society and R21-NS057241 from the National Institutes of Health to J.S.P. We thank Dr. Cai-Ying Guo for the assistance in generating the ES lines and Ms. Jennifer Macdonald for the helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shujun Ge.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ge, S., Murugesan, N. & Pachter, J.S. Astrocyte- and Endothelial-Targeted CCL2 Conditional Knockout Mice: Critical Tools for Studying the Pathogenesis of Neuroinflammation. J Mol Neurosci 39, 269–283 (2009). https://doi.org/10.1007/s12031-009-9197-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-009-9197-4

Keywords

Navigation