Skip to main content
Log in

Geranylgeranyltransferase I Promotes Human Glioma Cell Growth through Rac1 Membrane Association and Activation

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Geranylgeranyltransferase I (GGTase-I) is responsible for the posttranslational lipidation of several signaling proteins such as RhoA, Rac1, and Cdc42, which contribute to tumor development and metastasis. However, the role of GGTase-I in the progression of human glioma is largely unknown. Here, we provide the evidence that Rac1 mediates the effects of GGTase-I on the proliferation and apoptosis in human glioma cells. We found that GGTase-I was abundantly expressed in human primary glioma tissues. Inhibition or downregulation of GGTase-I markedly decreased the proliferation of glioma cells and induced their apoptosis, while overexpression of GGTase-I promoted cell growth in vitro. Inactivation of GGTase-I eliminated geranylgeranylation of RhoA and Rac1, prevented them from targeting to the plasma membrane, and inhibited Rac1 activity. Furthermore, overexpressing wild type or constitutively active Rac1 stimulated glioma cell growth, similar to the effect of GGTase-I overexpression. Importantly, overexpressing dominant-negative Rac1 or Rac1 with the prenylation site deleted or mutated abrogated GGTase-I-induced proliferation in glioma cells. These results confirm the view that geranylgeranylation is essential to the activity and localization of Rho family proteins and suggest that Rac1 is required for GGTase-I-mediated glioma growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Berndt N, Hamilton AD, Sebti SM (2011) Targeting protein prenylation for cancer therapy. Nat Rev Cancer 11:775–791

    Article  PubMed  CAS  Google Scholar 

  • Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE (1997) Geometric control of cell life and death. Science 276:1425–1428

    Article  PubMed  CAS  Google Scholar 

  • Chi DD, Merchant RE, Rand R, Conrad AJ, Garrison D, Turner R, Morton DL, Hoon DS (1997) Molecular detection of tumor-associated antigens shared by human cutaneous melanomas and gliomas. Am J Pathol 150:2143–2152

    PubMed  CAS  Google Scholar 

  • Dan HC, Jiang K, Coppola D, Hamilton A, Nicosia SV, Sebti SM, Cheng JQ (2004) Phosphatidylinositol-3-OH kinase/AKT and survivin pathways as critical targets for geranylgeranyltransferase I inhibitor-induced apoptosis. Oncogene 23:706–715

    Article  PubMed  CAS  Google Scholar 

  • Elias M, Klimes V (2012) Rho GTPases: deciphering the evolutionary history of a complex protein family. Methods Mol Biol 827:13–34

    Article  PubMed  CAS  Google Scholar 

  • El-Sibai M, Pertz O, Pang H, Yip SC, Lorenz M, Symons M, Condeelis JS, Hahn KM, Backer JM (2008) RhoA/ROCK-mediated switching between Cdc42- and Rac1-dependent protrusion in MTLn3 carcinoma cells. Exp Cell Res 314:1540–1552

    Article  PubMed  CAS  Google Scholar 

  • Fukuda A, Hikita A, Wakeyama H, Akiyama T, Oda H, Nakamura K, Tanaka S (2005) Regulation of osteoclast apoptosis and motility by small GTPase binding protein Rac1. J Bone Miner Res 20:2245–2253

    Article  PubMed  CAS  Google Scholar 

  • Ghavami S, Mutawe MM, Schaafsma D, Yeganeh B, Unruh H, Klonisch T, Halayko AJ (2012) Geranylgeranyl transferase 1 modulates autophagy and apoptosis in human airway smooth muscle. Am J Physiol Lung Cell Mol Physiol 302:L420–L428

    Article  PubMed  CAS  Google Scholar 

  • Guilluy C, Garcia-Mata R, Burridge K (2011) Rho protein crosstalk: another social network? Trends Cell Biol 21:718–726

    Article  PubMed  CAS  Google Scholar 

  • Hamada M, Miki T, Iwai S, Shimizu H, Yura Y (2011) Involvement of RhoA and RalB in geranylgeranyltransferase I inhibitor-mediated inhibition of proliferation and migration of human oral squamous cell carcinoma cells. Cancer Chemother Pharmacol 68:559–569

    Article  PubMed  CAS  Google Scholar 

  • Han B, Fujimoto N, Kobayashi M, Matsumoto T (2012) Synergistic effect of geranylgeranyltransferase inhibitor, GGTI, and docetaxel on the growth of prostate cancer cells. Prostate Cancer 2012:989214

    Article  PubMed  Google Scholar 

  • Hirata E, Yukinaga H, Kamioka Y, Arakawa Y, Miyamoto S, Okada T, Sahai E, Matsuda M (2012) In vivo fluorescence resonance energy transfer imaging reveals differential activation of Rho-family GTPases in glioblastoma cell invasion. J Cell Sci 125:858–868

    Article  PubMed  CAS  Google Scholar 

  • Hoshino D, Koshikawa N, Seiki M (2011) A p27(kip1)-binding protein, p27RF-Rho, promotes cancer metastasis via activation of RhoA and RhoC. J Biol Chem 286:3139–3148

    Article  PubMed  CAS  Google Scholar 

  • Ivanov SS, Charron G, Hang HC, Roy CR (2010) Lipidation by the host prenyltransferase machinery facilitates membrane localization of Legionella pneumophila effector proteins. J Biol Chem 285:34686–34698

    Article  PubMed  CAS  Google Scholar 

  • Joly A, Popjak G, Edwards PA (1991) In vitro identification of a soluble protein:geranylgeranyl transferase from rat tissues. J Biol Chem 266:13495–13498

    PubMed  CAS  Google Scholar 

  • Jones TS, Holland EC (2012) Standard of care therapy for malignant glioma and its effect on tumor and stromal cells. Oncogene 31:1995–2006

    Article  PubMed  CAS  Google Scholar 

  • Kazi A, Carie A, Blaskovich MA, Bucher C, Thai V, Moulder S, Peng H, Carrico D, Pusateri E, Pledger WJ, Berndt N, Hamilton A, Sebti SM (2009) Blockade of protein geranylgeranylation inhibits Cdk2-dependent p27Kip1 phosphorylation on Thr187 and accumulates p27Kip1 in the nucleus: implications for breast cancer therapy. Mol Cell Biol 29:2254–2263

    Article  PubMed  CAS  Google Scholar 

  • Khwaja A, Sharpe CC, Noor M, Hendry BM (2006) The role of geranylgeranylated proteins in human mesangial cell proliferation. Kidney Int 70:1296–1304

    Article  PubMed  CAS  Google Scholar 

  • Kreck ML, Uhlinger DJ, Tyagi SR, Inge KL, Lambeth JD (1994) Participation of the small molecular weight GTP-binding protein Rac1 in cell-free activation and assembly of the respiratory burst oxidase. Inhibition by a carboxyl-terminal Rac peptide. J Biol Chem 269:4161–4168

    PubMed  CAS  Google Scholar 

  • Lane KT, Beese LS (2006) Thematic review series: lipid posttranslational modifications. Structural biology of protein farnesyltransferase and geranylgeranyltransferase type I. J Lipid Res 47:681–699

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Chang Z, Chiao LJ, Kang Y, Xia Q, Zhu C, Fleming JB, Evans DB, Chiao PJ (2009) TrkBT1 induces liver metastasis of pancreatic cancer cells by sequestering Rho GDP dissociation inhibitor and promoting RhoA activation. Cancer Res 69:7851–7859

    Article  PubMed  CAS  Google Scholar 

  • Liu M, Sjogren AK, Karlsson C, Ibrahim MX, Andersson KM, Olofsson FJ, Wahlstrom AM, Dalin M, Yu H, Chen Z, Yang SH, Young SG, Bergo MO (2010) Targeting the protein prenyltransferases efficiently reduces tumor development in mice with K-RAS-induced lung cancer. Proc Natl Acad Sci U S A 107:6471–6476

    Article  PubMed  CAS  Google Scholar 

  • Lobell RB, Omer CA, Abrams MT, Bhimnathwala HG, Brucker MJ, Buser CA, Davide JP, deSolms SJ, Dinsmore CJ, Ellis-Hutchings MS, Kral AM, Liu D, Lumma WC, Machotka SV, Rands E, Williams TM, Graham SL, Hartman GD, Oliff AI, Heimbrook DC, Kohl NE (2001) Evaluation of farnesyl:protein transferase and geranylgeranyl:protein transferase inhibitor combinations in preclinical models. Cancer Res 61:8758–8768

    PubMed  CAS  Google Scholar 

  • Lu J, Chan L, Fiji HD, Dahl R, Kwon O, Tamanoi F (2009) In vivo antitumor effect of a novel inhibitor of protein geranylgeranyltransferase-I. Mol Cancer Ther 8:1218–1226

    Article  PubMed  CAS  Google Scholar 

  • Maurer-Stroh S, Washietl S, Eisenhaber F (2003) Protein prenyltransferases. Genome Biol 4:212

    Article  PubMed  Google Scholar 

  • Michaelson D, Silletti J, Murphy G, D'Eustachio P, Rush M, Philips MR (2001) Differential localization of Rho GTPases in live cells: regulation by hypervariable regions and RhoGDI binding. J Cell Biol 152:111–126

    Article  PubMed  CAS  Google Scholar 

  • Molnar G, Dagher MC, Geiszt M, Settleman J, Ligeti E (2001) Role of prenylation in the interaction of Rho-family small GTPases with GTPase activating proteins. Biochemistry 40:10542–10549

    Article  PubMed  CAS  Google Scholar 

  • Moomaw JF, Casey PJ (1992) Mammalian protein geranylgeranyltransferase. Subunit composition and metal requirements. J Biol Chem 267:17438–17443

    PubMed  CAS  Google Scholar 

  • Nakabayashi H, Shimizu K (2011) HA1077, a Rho kinase inhibitor, suppresses glioma-induced angiogenesis by targeting the Rho-ROCK and the mitogen-activated protein kinase kinase/extracellular signal-regulated kinase (MEK/ERK) signal pathways. Cancer Sci 102:393–399

    Article  PubMed  CAS  Google Scholar 

  • Parri M, Chiarugi P (2010) Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 8:23

    Article  PubMed  Google Scholar 

  • Patel RA, Forinash KD, Pireddu R, Sun Y, Sun N, Martin MP, Schonbrunn E, Lawrence NJ, Sebti SM (2012) RKI-1447 is a potent inhibitor of the rho-associated ROCK kinases with anti-invasive and antitumor activities in breast cancer. Cancer Res 72:5025–5034

    Article  PubMed  CAS  Google Scholar 

  • Rathinam R, Berrier A, Alahari SK (2011) Role of Rho GTPases and their regulators in cancer progression. Front Biosci 16:2561–2571

    Article  PubMed  CAS  Google Scholar 

  • Reiss Y (1995) Substrate interactions of protein prenyltransferases. Methods Enzymol 250:21–30

    Article  PubMed  CAS  Google Scholar 

  • Resh MD (2006) Trafficking and signaling by fatty-acylated and prenylated proteins. Nat Chem Biol 2:584–590

    Article  PubMed  CAS  Google Scholar 

  • Ridley AJ, Hall A (1994) Signal transduction pathways regulating Rho-mediated stress fibre formation: requirement for a tyrosine kinase. EMBO J 13:2600–2610

    PubMed  CAS  Google Scholar 

  • Sane KM, Mynderse M, Lalonde DT, Dean IS, Wojtkowiak JW, Fouad F, Borch RF, Reiners JJ Jr, Gibbs RA, Mattingly RR (2010) A novel geranylgeranyl transferase inhibitor in combination with lovastatin inhibits proliferation and induces autophagy in STS-26 T MPNST cells. J Pharmacol Exp Ther 333:23–33

    Article  PubMed  CAS  Google Scholar 

  • Seabra MC, Reiss Y, Casey PJ, Brown MS, Goldstein JL (1991) Protein farnesyltransferase and geranylgeranyltransferase share a common alpha subunit. Cell 65:429–434

    Article  PubMed  CAS  Google Scholar 

  • Senger DL, Tudan C, Guiot MC, Mazzoni IE, Molenkamp G, LeBlanc R, Antel J, Olivier A, Snipes GJ, Kaplan DR (2002) Suppression of Rac activity induces apoptosis of human glioma cells but not normal human astrocytes. Cancer Res 62:2131–2140

    PubMed  CAS  Google Scholar 

  • Sequeira L, Dubyk CW, Riesenberger TA, Cooper CR, van Golen KL (2008) Rho GTPases in PC-3 prostate cancer cell morphology, invasion and tumor cell diapedesis. Clin Exp Metastasis 25:569–579

    Article  PubMed  CAS  Google Scholar 

  • Sjogren AK, Andersson KM, Liu M, Cutts BA, Karlsson C, Wahlstrom AM, Dalin M, Weinbaum C, Casey PJ, Tarkowski A, Swolin B, Young SG, Bergo MO (2007) GGTase-I deficiency reduces tumor formation and improves survival in mice with K-RAS-induced lung cancer. J Clin Invest 117:1294–1304

    Article  PubMed  CAS  Google Scholar 

  • Sjogren AK, Andersson KM, Khan O, Olofsson FJ, Karlsson C, Bergo MO (2011) Inactivating GGTase-I reduces disease phenotypes in a mouse model of K-RAS-induced myeloproliferative disease. Leukemia 25:186–189

    Article  PubMed  Google Scholar 

  • Sun J, Ohkanda J, Coppola D, Yin H, Kothare M, Busciglio B, Hamilton AD, Sebti SM (2003) Geranylgeranyltransferase I inhibitor GGTI-2154 induces breast carcinoma apoptosis and tumor regression in H-Ras transgenic mice. Cancer Res 63:8922–8929

    PubMed  CAS  Google Scholar 

  • Taylor JS, Reid TS, Terry KL, Casey PJ, Beese LS (2003) Structure of mammalian protein geranylgeranyltransferase type-I. EMBO J 22:5963–5974

    Article  PubMed  CAS  Google Scholar 

  • Virtanen SS, Sandholm J, Yegutkin G, Kalervo Vaananen H, Harkonen PL (2010) Inhibition of GGTase-I and FTase disrupts cytoskeletal organization of human PC-3 prostate cancer cells. Cell Biol Int 34:815–826

    Article  PubMed  CAS  Google Scholar 

  • Wong KW, Mohammadi S, Isberg RR (2006) Disruption of RhoGDI and RhoA regulation by a Rac1 specificity switch mutant. J Biol Chem 281:40379–40388

    Article  PubMed  CAS  Google Scholar 

  • Wright LP, Philips MR (2006) Thematic review series: lipid posttranslational modifications. CAAX modification and membrane targeting of Ras. J Lipid Res 47:883–891

    Article  PubMed  CAS  Google Scholar 

  • Wu KY, Zhou XP, Luo ZG (2010) Geranylgeranyltransferase I is essential for dendritic development of cerebellar Purkinje cells. Mol Brain 3:18

    Article  PubMed  Google Scholar 

  • Yokoyama K, Goodwin GW, Ghomashchi F, Glomset JA, Gelb MH (1991) A protein geranylgeranyltransferase from bovine brain: implications for protein prenylation specificity. Proc Natl Acad Sci U S A 88:5302–5306

    Article  PubMed  CAS  Google Scholar 

  • Zhang FL, Casey PJ (1996) Protein prenylation: molecular mechanisms and functional consequences. Annu Rev Biochem 65:241–269

    Article  PubMed  CAS  Google Scholar 

  • Zhang M, Liu NY, Wang XE, Chen YH, Li QL, Lu KR, Sun L, Jia Q, Zhang L (2011) Activin B promotes epithelial wound healing in vivo through RhoA-JNK signaling pathway. PLoS One 6:e25143

    Article  PubMed  CAS  Google Scholar 

  • Zhao Y, Lam DH, Yang J, Lin J, Tham CK, Ng WH, Wang S (2012) Targeted suicide gene therapy for glioma using human embryonic stem cell-derived neural stem cells genetically modified by baculoviral vectors. Gene Ther 19:189–200

    Article  PubMed  CAS  Google Scholar 

  • Zhou XP, Luo ZG (2009) Regulation of protein prenyltransferase in central neurons. Commun Integr Biol 2:138–140

    PubMed  CAS  Google Scholar 

  • Zhou XP, Wu KY, Liang B, Fu XQ, Luo ZG (2008) TrkB-mediated activation of geranylgeranyltransferase I promotes dendritic morphogenesis. Proc Natl Acad Sci U S A 105:17181–17186

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Hua L, Zhang W, Zhu M, Shi Q, Li F, Zhang L, Song C, Yu R (2012) FRK controls migration and invasion of human glioma cells by regulating JNK/c-Jun signaling. J Neurooncol 110:9–19

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported in part by the projects of the National Natural Science Foundation of China (no. 81072072 and no. 31070933), the grant from the Natural Science Foundation of Jiangsu province (no. BK2011195), and Program for New Century Excellent Talents in University (NCET-10-0181).

Conflict of Interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiuping Zhou or Rutong Yu.

Additional information

Xiuping Zhou and Jinming Qian contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, X., Qian, J., Hua, L. et al. Geranylgeranyltransferase I Promotes Human Glioma Cell Growth through Rac1 Membrane Association and Activation. J Mol Neurosci 49, 130–139 (2013). https://doi.org/10.1007/s12031-012-9905-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-012-9905-3

Keywords

Navigation