Skip to main content
Log in

On the Role of Phosphatidylinositol 3-Kinase, Protein Kinase B/Akt, and Glycogen Synthase Kinase-3β in Photodynamic Injury of Crayfish Neurons and Glial Cells

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Photodynamic treatment that causes intense oxidative stress and cell death is currently used in neurooncology. However, along with tumor cells, it may damage healthy neurons and glia. To study the involvement of signaling processes in photodynamic injury or protection of neurons and glia, we used crayfish mechanoreceptor consisting of a single neuron surrounded by glial cells. It was photosensitized with alumophthalocyanine Photosens. Application of specific inhibitors showed that phosphatidylinositol 3-kinase did not participate in photoinduced death of neurons and glia. Akt was involved in photoinduced necrosis but not in apoptosis of neurons and glia. Glycogen synthase kinase-3β participated in photoinduced apoptosis of glial cells and in necrosis of neurons. Therefore, phosphatidylinositol 3-kinase/protein kinase Akt/glycogen synthase kinase-3β pathway was not involved as a whole in photodynamic injury of crayfish neurons and glia but its components, Akt and glycogen synthase kinase-3β, independently and cell specifically regulated death of neurons and glial cells. According to these data, necrosis in this system was a controlled but not a non-regulated cell death mode. The obtained results may be used for the search of pharmacological agents selectively modulating death and survival of normal neurons and glial cells during photodynamic therapy of brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Almeida RD, Manadas BJ, Carvalho AP, Duarte CB (2004) Intracellular signaling mechanisms in photodynamic therapy. Biochim Biophys Acta 1704:59–86

    PubMed  CAS  Google Scholar 

  • Bozkulak O, Wong S, Luna M, Ferrario A, Rucker N, Gulsoy M, Gomer CJ (2007) Multiple components of photodynamic therapy can phosphorylate Akt. Photochem Photobiol 83:1029–1033

    Article  PubMed  CAS  Google Scholar 

  • Brown SB, Brown EA, Walker I (2004) The present and future role of photodynamic therapy in cancer treatment. Lancet Oncol 5:497–508

    Article  PubMed  CAS  Google Scholar 

  • Boujrad H, Gubkina O, Robert N, Krantic S, Susin SA (2007) AIF-mediated programmed necrosis. A highly regulated way to die. Cell Cycle 6:2612–2619

    Article  PubMed  CAS  Google Scholar 

  • Buytaert E, Dewaele M, Agostinis P (2007) Molecular effectors of multiple cell death pathways initiated by photodynamic therapy. Biochim Biophys Acta 1776:86–107

    PubMed  CAS  Google Scholar 

  • Castano AP, Demidova TN, Hamblin MR (2005) Mechanisms in photodynamic therapy: part two—cellular signaling, cell metabolism and modes of cell death. Photodiagn Photodyn Ther 2:1–23

    Article  CAS  Google Scholar 

  • Chin PC, Majdzadeh N, D’Mello SR (2005) Inhibition of GSK3beta is a common event in neuroprotection by different survival factors. Brain Res Mol Brain Res 137:193–201

    Article  PubMed  CAS  Google Scholar 

  • Chong ZZ, Li F, Maiese K (2005) Activating Akt and the brain’s resources to drive cellular survival and prevent inflammatory injury. Histol Histopathol 20:299–315

    PubMed  CAS  Google Scholar 

  • Cuzzocrea S, Genovese T, Mazzon E, Crisafulli C, Di Paola R, Muià C, Collin M, Esposito E, Bramanti P, Thiemermann C (2006) Glycogen synthase kinase-3 beta inhibition reduces secondary damage in experimental spinal cord trauma. J Pharmacol and Experim Ther 318:79–89

    Article  CAS  Google Scholar 

  • Dolado I, Nebreda AR (2008) AKT and oxidative stress team up to kill cancer cells. Cancer Cell 14:427–429

    Article  PubMed  CAS  Google Scholar 

  • Duronio V (2008) The life of a cell: apoptosis regulation by the PI3K/PKB pathway. Biochem J 415:333–344

    Article  PubMed  CAS  Google Scholar 

  • Eljamel MS (2004) Brain PDD and PDT unlocking the mystery of malignant gliomas. Photodiagn Photodyn Ther 1:303–310

    Article  Google Scholar 

  • Espada J, Galaz S, Sanz-Rodríguez F, Blázquez-Castro A, Stockert JC, Bagazgoitia L, Jaén P, González S, Cano A, Juarranz A (2009) Oncogenic H-Ras and PI3K signaling can inhibit E-cadherin-dependent apoptosis and promote cell survival after photodynamic therapy in mouse keratinocytes. J Cell Physiol 219:84–93

    Article  PubMed  CAS  Google Scholar 

  • Fedorenko GM, Uzdensky AB (2009) Ultrastructure of neuroglial contacts in crayfish stretch receptor. Cell Tissue Res 337:477–490

    Article  PubMed  Google Scholar 

  • Ferrario A, Gomer CJ (2010) Targeting the 90 kDa heat shock protein improves photodynamic therapy. Cancer Lett 289:188–194

    Article  PubMed  CAS  Google Scholar 

  • Golstein P, Kroemer G (2006) Cell death by necrosis: towards a molecular definition. Trends Biochem Sci 32:37–43

    Article  PubMed  Google Scholar 

  • Florey E, Florey E (1955) Microanatomy of the abdominal stretch receptors of the crayfish (Astacus fluviatili L.). J Gen Physiol 39:69–85

    Article  PubMed  CAS  Google Scholar 

  • Guzman ML, Li X, Corbett CA, Rossi RM, Bushnell T, Liesveld JL, Hébert J, Young F, Jordan CT (2007) Rapid and selective death of leukemia stem and progenitor cells induced by the compound 4-benzyl, 2-methyl, 1, 2, 4-thiadiazolidine, 3, 5 dione (TDZD-8). Blood 110:4436–4444

    Article  PubMed  CAS  Google Scholar 

  • Jope RS, Bijur GN (2002) Mood stabilizers, glycogen synthase kinase-3beta and cell survival. Mol Psychiatry 17:S35–S45

    Article  Google Scholar 

  • Jope RS, Johnson GVW (2004) The glamour and gloom of glycogen synthase kinase-3. Trends Biochem Sci 29:95–102

    Article  PubMed  CAS  Google Scholar 

  • Kocanova S, Buytaert E, Matroule JYJ, Golab J, de Witte P, Agostinis P (2007) Induction of heme-oxygenase 1 requires the p38MAPK and PI3K pathways and suppresses apoptotic cell death following hypericin-mediated photodynamic therapy. Apoptosis 12:731–741

    Article  PubMed  CAS  Google Scholar 

  • Kolosov M, Uzdensky A (2006) Crayfish mechanoreceptor neuron prevents photoinduced apoptosis of satellite glial cells. Brain Res Bull 69:495–500

    Article  PubMed  Google Scholar 

  • Kostron H (2010) Photodynamic diagnosis and therapy and the brain. In: Gomer CJ (ed) Photodynamic therapy. Methods and protocols, methods in molecular biology, vol 635. Springer, New York, pp 261–280

    Google Scholar 

  • Krasilnikov MA (2000) Phosphatidylinositol-3 kinase dependent pathways: the role in control of cell growth, survival, and malignant transformation. Biochemistry (Mosc) 65:59–67

    CAS  Google Scholar 

  • Lobanov AV, Uzdensky AB (2009) Protection of crayfish glial cells but not neurons from photodynamic injury by nerve growth factor. J Mol Neurosci 39:308–319

    Article  PubMed  CAS  Google Scholar 

  • Los M, Maddika S, Erb B, Schulze-Osthoff K (2009) Switching Akt: from survival signaling to deadly response. Bioessays 31:492–495

    Article  PubMed  CAS  Google Scholar 

  • Schieke SM, von Montfort C, Buchczyk DP, Timmer A, Grether-Beck S, Krutmann J, Holbrook NJ, Klotz LO (2004) Singlet oxygen-induced attenuation of growth factor signaling: possible role of ceramides. Free Radic Res 38:729–737

    Article  PubMed  CAS  Google Scholar 

  • Sofroniew MV, Howe CL, Mobley WC (2001) Nerve growth factor signaling, neuroprotection, and neural repair. Ann Rev Neurosci 24:1217–1281

    Article  PubMed  CAS  Google Scholar 

  • Song G, Ouyang G, Bao S (2005) The activation of Akt/PKB signaling pathway and cell survival. J Cell Mol Med 9:59–71

    Article  PubMed  CAS  Google Scholar 

  • Stylli SS, Kaye AH (2006) Photodynamic therapy of cerebral glioma—a review. Part I. A biological basis. J Clin Neurosci 13:615–625

    Article  PubMed  CAS  Google Scholar 

  • Uzdensky AB (2008) Signal transduction and photodynamic therapy. Curr Sign Transd Ther 3:55–74

    Article  CAS  Google Scholar 

  • Uzdensky AB (2010) Controlled necrosis. Biochem (Moscow) Suppl Series A: Membr Cell Biol 4:3–12

    Article  Google Scholar 

  • Uzdensky A, Bragin D, Kolosov M, Dergacheva OYu, Fedorenko GM, Zhavoronkova AA (2002) Photodynamic inactivation of isolated crayfish mechanoreceptor neuron. Photochem Photobiol 76:431–437

    Article  PubMed  CAS  Google Scholar 

  • Uzdensky A, Kolosov M, Bragin D, Dergacheva O, Vanzha O, Oparina L (2005) Involvement of adenylate cyclase and tyrosine kinase signaling pathways in response of crayfish stretch receptor neuron and satellite glia cell to photodynamic treatment. Glia 49:339–348

    Article  PubMed  Google Scholar 

  • Uzdensky A, Lobanov A, Bibov M, Petin Y (2007) Involvement of Ca2+- and cyclic adenosine monophosphate-mediated signaling pathways in photodynamic injury of isolated crayfish neuron and satellite glial cells. J Neurosci Res 85:860–870

    Article  PubMed  CAS  Google Scholar 

  • Uzdensky AB, Kolosov MS, Lobanov AV (2008) Neuron and gliocyte death induced by photodynamic treatment: signal processes and neuroglial interactions. Neurosci Behav Physiol 38:727–735

    Article  Google Scholar 

  • Volanti C, Hendrickx N, Van Lint J, Matroule JY, Agostinis P, Piette J (2005) Distinct transduction mechanisms of cyclooxygenase 2 gene activation in tumour cells after photodynamic therapy. Oncogene 24:2981–2991

    Article  PubMed  CAS  Google Scholar 

  • Xue LY, Qiu Y, He J, Kung HJ, Oleinick NL (1999) Etk/Bmx, a PH-domain containing tyrosine kinase, protects prostate cancer cells from apoptosis induced by photodynamic therapy or thapsigargin. Oncogene 18:3391–3398

    Article  PubMed  CAS  Google Scholar 

  • Zheng X, Jiang F, Katakowski M, Zhang X, Jiang H, Zhang ZG, Chopp M (2008) Sensitization of cerebral tissue in nude mice with photodynamic therapy induces ADAM17/TACE and promotes glioma cell invasion. Cancer Lett 265:177–187

    Article  PubMed  CAS  Google Scholar 

  • Zhuang S, Kochevar IE (2003) Singlet oxygen-induced activation of Akt/protein kinase B is independent of growth factor receptors. Photochem Photobiol 78:361–371

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by RFBR grants 05-04048440 and 08-04-01322 and Minobrnauki RF grant 2.1.1/6185.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anatoly B. Uzdensky.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komandirov, M.A., Knyazeva, E.A., Fedorenko, Y.P. et al. On the Role of Phosphatidylinositol 3-Kinase, Protein Kinase B/Akt, and Glycogen Synthase Kinase-3β in Photodynamic Injury of Crayfish Neurons and Glial Cells. J Mol Neurosci 45, 229–235 (2011). https://doi.org/10.1007/s12031-011-9499-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-011-9499-1

Keywords

Navigation