Skip to main content

Advertisement

Log in

Neuron and gliocyte death induced by photodynamic treatment: Signal processes and neuron-glial interactions

  • Published:
Neuroscience and Behavioral Physiology Aims and scope Submit manuscript

Abstract

The mechanisms of photodynamic (PD) damage to neurons and gliocytes are discussed. The spike reactions of neurons are described, with stimulation at high concentrations of photosensitizer and inhibition at low concentrations, accompanying necrosis. Glial cells developed both necrosis and apoptosis. Local laser inactivation of neurons increased light-induced apoptosis of gliocytes, i.e., neurons maintained gliocyte survival. Inter-and intracellular signaling plays an important role in the photolesioning of these cells. Studies using inhibitors and activators of signal proteins demonstrated the involvement of the Ca2+-dependent, adenylate cyclase, and tyrosine kinase pathways in the responses of neurons and gliocytes to PD treatment. Pharmacological modulation may alter the selectivity of PD neuron and gliocyte damage and the efficacy of PD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. D. Braun and T. P. Mozhenok, Nonspecific Adaptation Syndrome in Cellular Systems [in Russian], Nauka, Leningrad (1987).

    Google Scholar 

  2. Yu. A. Vladimirov and A. Ya. Potapenko, Physicochemical Bases of Photobiological Processes [in Russian], Vysshaya Shkola, Moscow (1989).

    Google Scholar 

  3. N. K. Zenkov, V. Z. Lankin, and E. B. Men’shchikova, Oxidative Stress [in Russian], MAIK Nauka/Interperiodika, Moscow (2001).

    Google Scholar 

  4. A. A. Krasnovskii, “Photodynamic actions and singlet oxygen,” Biofizika, 49, 305–322 (2004).

    PubMed  CAS  Google Scholar 

  5. R. G. Lyukdovskaya and Yu. M. Burmistrov, “Photobioelectrical processes in excitable cells,” in: Biophysics of Living Cells, [in Russian], Institute of Biophysics of the Academy of Sciences of the USSR Press, Pushchina (1987), No. 2, pp. 50–67.

    Google Scholar 

  6. M. M. Odinak and N. V. Tsygan, “Nerve growth factor in the central nervous system,” Nauka, St. Petersburg (2005).

    Google Scholar 

  7. M. A. Pal’tsev, A. A. Ivanov, and S. E. Severin, Intercellular Interactions [in Russian], Meditsina, Moscow (2003).

    Google Scholar 

  8. Programmable Cell Death [in Russian], V. S. Novikov (ed.), Nauka, St. Petersburg (1996).

    Google Scholar 

  9. A. B. Uzdenskii, A. A. Zhavoronkova, A. F. Mironov, and S. G. Kuz’min, “Studies of the photodynamic actions of new photosensitizers on isolated nerve cells,” Izv. Ros. Akad. Nauk. Ser. Biol., No. 2, 230–238 (2000).

    Google Scholar 

  10. G. M. Fedorenko, D. E. Bragin, M. S. Kolosov, et al., “Dynamics of ultrastructural changes in isolated mechanoreceptor neurons during light-induced oxidative stress,” in: Questions in Neurocybernetics [in Russian], OOO TsVVR Press, Rostov-on-Don (2002), Vol. 2, 289–290.

    Google Scholar 

  11. L. Kh. Éidus, Nonspecific Cell Reactions and Radiosensitivity [in Russian], Atomizdat, Moscow 1977).

    Google Scholar 

  12. P. Agostinis, E. Buytaert, H. Breyseens, and N. Hendrickx, “Regulatory pathways in photodynamic therapy induced apoptosis,” Photochem. Photobiol. Sci., 3, 721–729 (2004).

    Article  PubMed  CAS  Google Scholar 

  13. R. D. Almeida, B. J. Manadas, A. P. Carvalho, and C. B. Duarte, “Intracellular signaling mechanisms in photodynamic therapy,” Biochem. Biophys. Acta, 1704, 59–86 (2004).

    PubMed  CAS  Google Scholar 

  14. B. M. Aveline, “Primary processes in photosensitization mechanisms,” in: Photodynamic Therapy and Fluorescence Diagnosis in Dermatology, Elsevier, Amsterdam (2001), pp. 17–37.

    Chapter  Google Scholar 

  15. G. L. Barrett, “The p75 neurotrophin receptor and neuronal apoptosis,” Progr. Neurobiol., 61, 215–229 (2000).

    Article  Google Scholar 

  16. D. K. Bartschat and T. E. Rhodes, “PKC modulates Ca channels in isolated presynaptic nerve terminals of rat hippocampus,” J. Neurochem., 64, 2064–2072 (1995).

    PubMed  CAS  Google Scholar 

  17. E. Ben-Hur and T. M. A. R. Dubbelman, “Cytoplasmic free calcium changes as trigger mechanism in the response of cells to photosensitization,” Photochem. Photobiol., 58, 890–894 (1993).

    Article  Google Scholar 

  18. S. C. Benn and C. J. Wolfe, “Adult neuron survival strategies — slamming on the brakes,” Nature Rev., 5, 686–700 (2004).

    Article  CAS  Google Scholar 

  19. R. W. Boyle and D. Dolphin, “Structure and biodistribution relationships of photodynamic sensitizers,” Photochem. Photobiol., 64, 469–485 (1996).

    Article  PubMed  CAS  Google Scholar 

  20. S. B. Brown, E. A. Walker, and I. Walker, “The present and future role of photodynamic therapy in cancer treatment,” Lancet Oncology, 5, 497–508 (2004).

    Article  PubMed  CAS  Google Scholar 

  21. A. P. Castano, T. N. Demidova, and M. R. Hamblin, “Mechanisms in photodynamic therapy: part one — photosensitizers, photochemistry and cellular localization,” Photodiagn. Photodyn. Ther., 1, 279–293 (2004).

    Article  CAS  Google Scholar 

  22. A. P. Castano, T. N. Demidova, and M. R. Hamblin, “Mechanisms in photodynamic therapy: part two — cellular signaling, cell metabolism and modes of cell death,” Photodiagn. Photodyn. Ther., 2, 1–23 (2005).

    Article  CAS  Google Scholar 

  23. R. J. Colbran, “Targeting of calcium/calmodulin-dependent protein kinase II,” Biochem. J., 378, No. 1, 1–16 (2004).

    Article  PubMed  CAS  Google Scholar 

  24. M. J. Davies, “Singlet oxygen-mediated damage to proteins and its consequences,” Biochem. Biophys. Res. Commun., 305, 761–770 (2003).

    Article  PubMed  CAS  Google Scholar 

  25. T. Dougherty, C. J. Gomer, B. W. Henderson, et al., “Photodynamic therapy,” J. Natl. Cancer Inst., 90, 889–903 (1998).

    Article  PubMed  CAS  Google Scholar 

  26. T. Dragovich, C. M. Rubin, and C. B. Thompson, “Signal transduction pathways that regulate cell survival and death,” Oncogene, 17, 3207–3213 (1998).

    Article  PubMed  Google Scholar 

  27. B. Ehrenberg, E. Gross, Y. Nitzan, and Z. Malik, “Electric depolarization of photosensitized cells: lipids vs. protein alterations,” Biochem. Biophys. Acta, 1151, 257–264 (1993).

    Article  PubMed  CAS  Google Scholar 

  28. M. S. Eljamel, “Brain PDD and PDT unlocking the mystery of malignant gliomas,” Photodiagn. Photodyn. Ther., 1, 303–310 (2004).

    Article  Google Scholar 

  29. A. N. Garratt, S. Britsch, and C. Birchmeier, “Neuregulin, a factor with many functions in the life of a Schwann cell,” BioEssays, 22, 987–996 (2000).

    Article  PubMed  CAS  Google Scholar 

  30. A. Girotti, “Photosensitized oxidation of membrane lipids: reaction pathways, cytotoxic effects, and cytoprotective mechanisms,” J. Photochem. Photobiol., B63, 103–113 (2001).

    Google Scholar 

  31. T. T. Goodell and P. J. Muller, “Photodynamic therapy: a novel treatment for primary brain malignancy,” J. Neurosci. Nurs., 33, 296–300 (2001).

    PubMed  CAS  Google Scholar 

  32. Handbook of Cell Signaling, R. A. Bradshaw and E. A. Dennis (eds.), Academic Press, New York (2003).

    Google Scholar 

  33. M. Jaattela, “Programmed cell death: many ways for cells to die decently,” Ann. Med., 34, 480–488 (2002).

    Article  PubMed  Google Scholar 

  34. J. F. R. Kerr, A. H. Willie, and A. R. Currie, “Apoptosis: a basic biological phenomenon with wide-ranging implication in tissue kinetics,” Brit. J. Cancer, 26, 239–257 (1972).

    PubMed  CAS  Google Scholar 

  35. J. M. Kiriakis and J. Avruch, “Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation,” Physiol. Rev., 81, 807–869 (2001).

    Google Scholar 

  36. M. Kolosov and A. Uzdensky, “Crayfish mechanoreceptor neuron prevents photoinduced apoptosis of satellite glial cells,” Brain Res. Bull., 69, 495–500 (2006).

    Article  PubMed  Google Scholar 

  37. G. Krauss, Biochemistry of Signal Transduction and Regulation, John Wiley and Sons, Weinheim (2003).

    Google Scholar 

  38. M. Kress, M. Petersen, and P. W. Reech, “Methylene blue induces ongoing activity in rat cutaneous primary afferents and depolarization of DRG neurons via a photosensitive mechanism,” Naunyn Schmiedebergs Arch. Pharmacol., 356, 619–625 (1997).

    Article  PubMed  CAS  Google Scholar 

  39. A. V. Lobanov and A. B. Uzdensky, “PDT-induced death of sensory neurons and glial cells in the isolated crayfish stretch receptor after proteolytic treatment,” J. Neurosci. Res., 82, 866–874, (2005).

    Article  PubMed  CAS  Google Scholar 

  40. J. Moan and K. Berg, “The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen,” Photochem. Photobiol., 53, 549–553 (1991).

    Article  PubMed  CAS  Google Scholar 

  41. J. Moan and Q. Peng, “An outline of the hundred-year history of PDT,” Anticancer Res., 23, 3591–3600 (2003).

    PubMed  Google Scholar 

  42. A. C. E. Moor, “Signalling pathways in cell death and survival after photodynamic therapy,” J. Photochem. Photobiol., B57, 1–13 (2000).

    Google Scholar 

  43. A. C. Newton and J. E. Johnson, “Protein kinase C: a paradigm for regulation of protein function by two membrane-targeting modules,” Biochem. Biophys. Acta, 1376, 155–172 (1998).

    PubMed  CAS  Google Scholar 

  44. N. L. Oleinik, R. L. Morris, and I. Belichenko, “The role of apoptosis in response to photodynamic therapy: what, where, why, and how,” Photochem. Photobiol. Sci., 1, 1–21 (2002).

    Article  CAS  Google Scholar 

  45. S. Orrenius, B. Zhivotovsky, and P. Nicotera, “Regulation of cell death: the calcium-apoptosis link,” Nat. Rev. Mol. Cell Biol., 4, 552–565 (2003).

    Article  PubMed  CAS  Google Scholar 

  46. R. L. Patterson, D. Boehning, and S. H. Snyder, “Inositol-1,4,5-triphosphate receptors as signal integrators,” Ann. Rev. Biochem., 73, 437–465 (2004).

    Article  PubMed  CAS  Google Scholar 

  47. K. Plaetzer, T. Kiesslich, C. B. Oberdanner, and B. Krammer, “Apoptosis following photodynamic tumor therapy: Induction, mechanisms and detection,” Curr. Pharm. Design, 11, 1151–1165 (2005).

    Article  CAS  Google Scholar 

  48. J. P. Pooler, “Photodynamic alteration of sodium current in lobster axon,” J. Gen. Physiol., 60, 367–387 (1972).

    Article  PubMed  CAS  Google Scholar 

  49. S. D. Skaper, M. Floreani, A. Negro, et al., “Neurotrophins rescue cerebellar granule neurons from oxidative stress-mediated apoptotic death: involvement of phosphatidylinositol 3-kinase and the mitogen-activated protein kinase pathway,” J. Neurochem., 70, 1859–1868 (1998).

    Article  PubMed  CAS  Google Scholar 

  50. A. S. Sobolev, D. A. Jans, and A. A. Rosenkrantz, “Targeted intracellular delivery of photosensitizers (review),” Progr. Biophys. Mol. Biol., 73, 51–90 (2000).

    Article  CAS  Google Scholar 

  51. M. V. Sofroniew, C. L. Howe, and W. C. Mobley, “Nerve growth factor signaling, neuroprotection, and neural repair,” Ann. Rev. Neurosci., 24, 1217–1281 (2001).

    Article  PubMed  CAS  Google Scholar 

  52. K. G. Specht and M. A. Rogers, “Plasma membrane depolarization and calcium influx during cell injury by photodynamic action,” Biochem. Biophys. Acta, 1070, 60–68 (1991).

    Article  PubMed  CAS  Google Scholar 

  53. M. Stocker, K. Hirzel, D. D’hoedt, and P. Pedarzani, “Matching molecules to function: neuronal Ca2+-activated K+ channels and afterhyperpolarizations,” Toxicon, 43, 933–949 (2004).

    Article  PubMed  CAS  Google Scholar 

  54. A. Strasser, L. O’Connor, and V. M. Dixit, “Apoptosis signaling,” Ann. Rev. Biochem., 69, 217–245 (2000).

    Article  PubMed  CAS  Google Scholar 

  55. S. S. Stylli and A. H. Kaye, “Photodynamic therapy of cerebral glioma — a review. Part II — clinical studies,” J. Clin. Neurosci., 13, 709–717 (2006).

    Article  PubMed  CAS  Google Scholar 

  56. P. Syntichaki and N. Tavernakis, “The biochemistry of neuronal necrosis: rogue biology?” Nat. Rev. Neurosci., 4, 672–684 (2003).

    Article  PubMed  CAS  Google Scholar 

  57. A. K. Urazaev, R. M. Grossfeld, P. L. Fletcher, et al., “Synthesis and release of N-acetylaspartylglutamate (NAAG) by crayfish nerve fibers: implications for axon-glia signaling,” Neurosci., 106, 237–247 (2001).

    Article  CAS  Google Scholar 

  58. A. B. Uzdensky, D. E. Bragin, M. S. Kolosov, et al., “Photodynamic inactivation of isolated crayfish mechanoreceptor neuron: different death modes under different photosensitizer concentrations,” Photochem. Photobiol., 76, 431–437 (2002).

    Article  PubMed  CAS  Google Scholar 

  59. A. B. Uzdensky, O. Yu. Dergacheva, A. A. Zhavoronkova, et al., “Photodynamic effect of deuteroporphyrin IX and hematoporphyrin derivatives on single neuron,” Biochem. Biophys. Res. Commun., 281, 1194–1199 (2001).

    Article  PubMed  CAS  Google Scholar 

  60. A. B. Uzdensky, O. Y. Dergacheva, A. A. Zhavoronkova, et al., “Photodynamic effect of novel chlorin e6 derivatives on a single nerve cell,” Life Sci., 74, 2185–2197 (2004).

    Article  PubMed  CAS  Google Scholar 

  61. A. Uzdensky, M. Kolosov, D. Bragin, et al., “Involvement of adenylate cyclase and tyrosine kinase signaling pathways in response of crayfish stretch receptor neuron and satellite glia cell to photodynamic treatment,” Glia, 49, 339–348 (2005).

    Article  PubMed  Google Scholar 

  62. A. Uzdensky, A. Lobanov, M. Bibov, and Y. Petin, “Involvement of Ca2+-and cyclic adenosine monophosphate-mediated signaling pathways in photodynamic injury of isolated crayfish neuron and satellite glial cells,” J. Neurosci. Res., 85, 860–870 (2007).

    Article  PubMed  CAS  Google Scholar 

  63. A. B. Uzdensky, A. A. Zhavoronkova, and O. Y. Dergacheva, “Firing inhibition processes in the response dynamics of isolated crayfish nerve cell to the photodynamic effect of sulphonated aluminum phthalocyanine: participation of free radicals and Ca2+,” Lasers Med. Sci., 15, 123–130 (2000).

    Article  Google Scholar 

  64. D. P. Valenzano and M. Tarr, “Membrane photomodification and its use to study reactive oxygen effects,” in: Photochemistry and Photophysics, CRC Press, Boca Raton (1991), Vol. 8, pp. 137–191.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Uzdenskii.

Additional information

__________

Translated from Morfologiya, Vol. 132, No. 4, pp. 7–15, July–August, 2007.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uzdenskii, A.B., Kolosov, M.S. & Lobanov, A.V. Neuron and gliocyte death induced by photodynamic treatment: Signal processes and neuron-glial interactions. Neurosci Behav Physi 38, 727–735 (2008). https://doi.org/10.1007/s11055-008-9042-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11055-008-9042-1

Key Words

Navigation