Skip to main content

Advertisement

Log in

Proliferation and Differentiation of Neural Stem Cells Are Selectively Regulated by Knockout of Cyclin D1

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Although stem cells can proliferate and differentiate through the completion of cell cycle progression, little is known about the genes and molecular mechanisms controlling this process. Here, we investigated the effect of the inhibition of cell cycle by cyclin D1 gene knockout on proliferation and differentiation of neural stem cells (NSCs). Knockout of cyclin D1 induced the cultured neural stem cells arrested at the G0/G1 phase as detected by flow cytometry. Cyclin D1 knockout led to the apoptosis of NSCs and inhibited the differentiation into astrocytes without affecting the differentiation into neurons. We further demonstrated that a significant reduction of BrdU+ cells in the subgranular zone of the dentate gyrus and subventricular zone was found in cyclin D1 gene knockout (cyclin D1−/−) mice compared with cyclin D1+/+ and cyclin D1+/− mice. These observations demonstrated that cyclin D1 plays essential roles in the proliferation and differentiation of neural stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

BrdU:

5-Bromo-2′-deoxyuridine

TuJI:

β-Tubulin III

NSC:

Neural stem cell

PI:

Propidium iodide

TUNEL:

Terminal deoxynucleotidyl transferase dUTP nick-end labeling

SVZ:

The subventricular zone

DG:

The subgranular zone of the dentate gyrus

References

  • Baldin V, Lukas J et al (1993) Cyclin D1 is a nuclear protein required for cell cycle progression in G1. Genes Dev 7(5):812–21

    Article  CAS  PubMed  Google Scholar 

  • Bates S, Bonetta L et al (1994) CDK6 (PLSTIRE) and CDK4 (PSK-J3) are a distinct subset of the cyclin-dependent kinases that associate with cyclin D1. Oncogene 9(1):71–9

    CAS  PubMed  Google Scholar 

  • Bordey A (2006) Adult neurogenesis, basic concepts of signaling. Cell Cycle 5(7):722–8

    CAS  PubMed  Google Scholar 

  • Chen Y, Dong C (2009) Abeta40 promotes neuronal cell fate in neural progenitor cells. Cell Death Differ 16(3):386–94

    Article  CAS  PubMed  Google Scholar 

  • Dyer MA, Cepko CL (2000) p57(Kip2) regulates progenitor cell proliferation and amacrine interneuron development in the mouse retina. Development 127(16):3593–3605

    CAS  PubMed  Google Scholar 

  • Fantl V, Stamp G et al (1995) Mice lacking cyclin D1 are small and show defects in eye and mammary gland development. Genes Dev 9(19):2364–2372

    Article  CAS  PubMed  Google Scholar 

  • Ferguson KL, Slack RS (2001) The Rb pathway in neurogenesis. Neuroreport 12(9):A55–A62

    Article  CAS  PubMed  Google Scholar 

  • Gavrieli Y, Sherman Y et al (1992) Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol 119(3):493–501

    Google Scholar 

  • Hayes TE, Valtz NL et al (1991) Downregulation of CDC2 upon terminal differentiation of neurons. New Biol 3(3):259–269

    CAS  PubMed  Google Scholar 

  • He F, Ge W et al (2005) A positive autoregulatory loop of Jak-STAT signaling controls the onset of astrogliogenesis. Nat Neurosci 8(5):616–625

    Article  CAS  PubMed  Google Scholar 

  • Kohn KW (1999) Molecular interaction map of the mammalian cell cycle control and DNA repair systems. Mol Biol Cell 10(8):2703–2734

    CAS  PubMed  Google Scholar 

  • Kuwabara T, Hsieh J et al (2004) A small modulatory dsRNA specifies the fate of adult neural stem cells. Cell 116(6):779–793

    Article  CAS  PubMed  Google Scholar 

  • Lukas J, Pagano M et al (1994) Cyclin D1 protein oscillates and is essential for cell cycle progression in human tumour cell lines. Oncogene 9(3):707–718

    CAS  PubMed  Google Scholar 

  • Matsushime H, Quelle DE et al (1994) D-type cyclin-dependent kinase activity in mammalian cells. Mol Cell Biol 14(3):2066–2076

    CAS  PubMed  Google Scholar 

  • Meijer L, Borgne A et al (1997) Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdc2, cdk2 and cdk5. Eur J Biochem 243:527–536

    Google Scholar 

  • Ohnuma S, Philpott A et al (1999) p27Xic1, a Cdk inhibitor, promotes the determination of glial cells in Xenopus retina. Cell 99(5):499–510

    Article  CAS  PubMed  Google Scholar 

  • Okano HJ, Pfaff DW et al (1993) RB and Cdc2 expression in brain: correlations with 3H-thymidine incorporation and neurogenesis. J Neurosci 13(7):2930–2938

    CAS  PubMed  Google Scholar 

  • Pines J (2006) Mitosis: a matter of getting rid of the right protein at the right time. Trends Cell Biol 16(1):55–63

    Article  CAS  PubMed  Google Scholar 

  • Platel JC, Lacar B et al (2007) GABA and glutamate signaling: homeostatic control of adult forebrain neurogenesis. J Mol Hist 38:303–311

    Article  CAS  Google Scholar 

  • Sicinski P, Donaher JL et al (1995) Cyclin D1 provides a link between development and oncogenesis in the retina and breast. Cell 82(4):621–630

    Article  CAS  PubMed  Google Scholar 

  • Sumrejkanchanakij P, Tamamori-Adachi M et al (2003) Role of cyclin D1 cytoplasmic sequestration in the survival of postmitotic neurons. Oncogene 22(54):8723–8730

    Google Scholar 

  • Swanton C (2004) Cell-cycle targeted therapies. Lancet Oncol 5(1):27–36

    Article  CAS  PubMed  Google Scholar 

  • Tamaru T, Okada M et al (1994) Differential expression of D type cyclins during neuronal maturation. Neurosci Lett 168(1–2):229–232

    Article  CAS  PubMed  Google Scholar 

  • van Grunsven LA, Thomas A et al (1996) Nerve growth factor-induced accumulation of PC12 cells expressing cyclin D1: evidence for a G1 phase block. Oncogene 12(4):855–862

    PubMed  Google Scholar 

  • Wang W, Bu B et al (2009) Neural cell cycle dysregulation and central nervous system diseases. Prog Neurobiol 89:1–17

    Article  CAS  PubMed  Google Scholar 

  • Xiong Y, Zhang H et al (1992) D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA. Cell 71(3):505–514

    Article  CAS  PubMed  Google Scholar 

  • Xiong W, Pestell R et al (1997a) Role of cyclins in neuronal differentiation of immortalized hippocampal cells. Mol Cell Biol 17(11):6585–6597

    CAS  PubMed  Google Scholar 

  • Xiong W, Pestell RG et al (1997b) Cyclin D1 is required for S phase traversal in bovine tracheal myocytes. Am J Physiol 272(6 Pt 1):L1205–L1210

    CAS  PubMed  Google Scholar 

  • Yan GZ, Ziff EB (1995) NGF regulates the PC12 cell cycle machinery through specific inhibition of the Cdk kinases and induction of cyclin D1. J Neurosci 15(9):6200–6212

    CAS  PubMed  Google Scholar 

  • Yang Y, Mufson EJ et al (2003) Neuronal cell death is preceded by cell cycle events at all stages of Alzheimer's disease. J Neurosci 23(7):2557–2563

    CAS  PubMed  Google Scholar 

  • Zezula J, Casaccia-Bonnefil P et al (2001) p21cip1 is required for the differentiation of oligodendrocytes independently of cell cycle withdrawal. EMBO Rep 2(1):27–34

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by grants from the National Natural Science Foundation of China (nos. 30725019, 30971007, and 30800341).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Wang or Minjie Xie.

Additional information

Ma J and Yu Z contribute equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J., Yu, Z., Qu, W. et al. Proliferation and Differentiation of Neural Stem Cells Are Selectively Regulated by Knockout of Cyclin D1. J Mol Neurosci 42, 35–43 (2010). https://doi.org/10.1007/s12031-010-9362-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-010-9362-9

Keywords

Navigation