Skip to main content
Log in

Proliferation of hippocampal progenitors relies on p27-dependent regulation of Cdk6 kinase activity

  • Original Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Neural stem cells give rise to granule dentate neurons throughout life in the hippocampus. Upon activation, these stem cells generate fast proliferating progenitors that complete several rounds of divisions before differentiating into neurons. Although the mechanisms regulating the activation of stem cells have been intensively studied, little attention has been given so far to the intrinsic machinery allowing the expansion of the progenitor pool. The cell cycle protein Cdk6 positively regulates the proliferation of hippocampal progenitors, but the mechanism involved remains elusive. Whereas Cdk6 functions primarily as a cell cycle kinase, it can also act as transcriptional regulator in cancer cells and hematopoietic stem cells. Using mouse genetics, we show here that the function of Cdk6 in hippocampal neurogenesis relies specifically on its kinase activity. The present study also reveals a specific regulatory mechanism for Cdk6 in hippocampal progenitors. In contrast to the classical model of the cell cycle, we observe that the Cip/Kip family member p27, rather than the Ink4 family, negatively regulates Cdk6 in the adult hippocampus. Altogether, our data uncover a unique, cell type-specific regulatory mechanism controlling the expansion of hippocampal progenitors, where Cdk6 kinase activity is modulated by p27.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AC3:

Activated caspase 3

DG:

Dentate gyrus

SGZ:

Subgranular zone

Rb:

Retinoblastoma protein

Cdk:

Cyclin-dependent kinase

CKI:

Cyclin-dependent kinase inhibitors

BrdU:

Bromodeoxyuridine

PFA:

Paraformaldehyde

PBS:

Phosphate-buffered saline

DAPI:

4′,6-Diamidino-2-phenylindole

SVZ:

Subventricular zone

PVDF:

Polyvinylidene difluoride

References

  1. Kempermann G, Song H, Gage FH (2015) Neurogenesis in the adult hippocampus. Cold Spring Harb Perspect Med 5:a018812. https://doi.org/10.1101/cshperspect.a018812

    Article  CAS  Google Scholar 

  2. Salomoni P, Calegari F (2010) Cell cycle control of mammalian neural stem cells: putting a speed limit on G1. Trends Cell Biol 20:233–243. https://doi.org/10.1016/j.tcb.2010.01.006

    Article  CAS  PubMed  Google Scholar 

  3. Dalton S (2015) Linking the cell cycle to cell fate decisions. Trends Cell Biol 25:592–600. https://doi.org/10.1016/j.tcb.2015.07.007

    Article  PubMed  PubMed Central  Google Scholar 

  4. Beukelaers P, Vandenbosch R, Caron N et al (2011) Cdk6-dependent regulation of G(1) length controls adult neurogenesis. Stem Cells 29:713–724. https://doi.org/10.1002/stem.616

    Article  CAS  PubMed  Google Scholar 

  5. Kowalczyk A, Filipkowski RK, Rylski M et al (2004) The critical role of cyclin D2 in adult neurogenesis. J Cell Biol 167:209–213. https://doi.org/10.1083/jcb.200404181

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sherr CJ, Roberts JM (1999) CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 13:1501–1512

    Article  CAS  PubMed  Google Scholar 

  7. Blain SW (2008) Switching cyclin D–Cdk4 kinase activity on and off. Cell Cycle 7:892–898. https://doi.org/10.4161/cc.7.7.5637

    Article  CAS  PubMed  Google Scholar 

  8. Vandenbosch R, Borgs L, Beukelaers P et al (2007) CDK2 is dispensable for adult hippocampal neurogenesis. Cell Cycle 6:3065–3069

    Article  CAS  PubMed  Google Scholar 

  9. Kollmann K, Heller G, Schneckenleithner C et al (2013) A kinase-independent function of CDK6 links the cell cycle to tumor angiogenesis. Cancer Cell 24:167–181. https://doi.org/10.1016/j.ccr.2013.07.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Scheicher R, Hoelbl-Kovacic A, Bellutti F et al (2015) CDK6 as a key regulator of hematopoietic and leukemic stem cell activation. Blood 125:90–101. https://doi.org/10.1182/blood-2014-06-584417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Jena N, Sheng J, Hu JK et al (2016) CDK6-mediated repression of CD25 is required for induction and maintenance of Notch1-induced T-cell acute lymphoblastic leukemia. Leukemia 30:1033–1043. https://doi.org/10.1038/leu.2015.353

    Article  CAS  PubMed  Google Scholar 

  12. Pechnick RN, Zonis S, Wawrowsky K et al (2008) p21Cip1 restricts neuronal proliferation in the subgranular zone of the dentate gyrus of the hippocampus. Proc Natl Acad Sci USA 105:1358–1363. https://doi.org/10.1073/pnas.0711030105

    Article  PubMed  PubMed Central  Google Scholar 

  13. Qiu J, Takagi Y, Harada J et al (2009) p27Kip1Constrains proliferation of neural progenitor cells in adult brain under homeostatic and ischemic conditions. Stem Cells 27:920–927. https://doi.org/10.1002/stem.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hörster H, Garthe A, Walker TL et al (2017) p27kip1 is required for functionally relevant adult hippocampal neurogenesis in mice. Stem Cells (Dayton, Ohio) 35:787–799. https://doi.org/10.1002/stem.2536

    Article  CAS  Google Scholar 

  15. Furutachi S, Matsumoto A, Nakayama KI, Gotoh Y (2013) p57 controls adult neural stem cell quiescence and modulates the pace of lifelong neurogenesis. EMBO J 32:970–981. https://doi.org/10.1038/emboj.2013.50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Andreu Z, Khan MA, GonzÁlez-Gómez P et al (2015) The cyclin-dependent kinase inhibitor p27 kip1 regulates radial stem cell quiescence and neurogenesis in the adult hippocampus. Stem Cells 33:219–229. https://doi.org/10.1002/stem.1832

    Article  CAS  PubMed  Google Scholar 

  17. Franklin DS, Godfrey VL, Lee H et al (1998) CDK inhibitors p18(INK4c) and p27(Kip1) mediate two separate pathways to collaboratively suppress pituitary tumorigenesis. Genes Dev 12:2899–2911. https://doi.org/10.1101/gad.12.18.2899

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Malumbres M, Sotillo R, Santamaría D et al (2004) Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118:493–504. https://doi.org/10.1016/j.cell.2004.08.002

    Article  CAS  PubMed  Google Scholar 

  19. Hu MG, Deshpande A, Schlichting N et al (2011) CDK6 kinase activity is required for thymocyte development. Blood 117:6120–6131. https://doi.org/10.1182/blood-2010-08-300517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Fero ML, Rivkin M, Tasch M et al (1996) A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice. Cell 85:733–744

    Article  CAS  PubMed  Google Scholar 

  21. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Breunig JJ, Silbereis J, Vaccarino FM et al (2007) Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proc Natl Acad Sci USA 104:20558–20563. https://doi.org/10.1073/pnas.0710156104

    Article  PubMed  PubMed Central  Google Scholar 

  23. Glickstein SB, Monaghan JA, Koeller HB et al (2009) Cyclin D2 is critical for intermediate progenitor cell proliferation in the embryonic cortex. J Neurosci 29:9614–9624. https://doi.org/10.1523/JNEUROSCI.2284-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hu MG, Deshpande A, Enos M et al (2009) A requirement for cyclin-dependent kinase 6 in thymocyte development and tumorigenesis. Cancer Res 69:810–818. https://doi.org/10.1158/0008-5472.CAN-08-2473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nicola Z, Fabel K, Kempermann G (2015) Development of the adult neurogenic niche in the hippocampus of mice. Front Neuroanat 9:53. https://doi.org/10.3389/fnana.2015.00053

    Article  PubMed  PubMed Central  Google Scholar 

  26. Molofsky AV, Slutsky SG, Joseph NM et al (2006) Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443:448–452. https://doi.org/10.1038/nature05091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zindy F, Soares H, Herzog KH et al (1997) Expression of INK4 inhibitors of cyclin D-dependent kinases during mouse brain development. Cell Growth Differ 8:1139–1150

    CAS  PubMed  Google Scholar 

  28. Zindy F, Quelle DE, Roussel MF, Sherr CJ (1997) Expression of the p16INK4a tumor suppressor versus other INK4 family members during mouse development and aging. Oncogene 15:203–211. https://doi.org/10.1038/sj.onc.1201178

    Article  CAS  PubMed  Google Scholar 

  29. Gong S, Zheng C, Doughty ML et al (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425:917–925. https://doi.org/10.1038/nature02033

    Article  CAS  PubMed  Google Scholar 

  30. Noh SJ, Li Y, Xiong Y, Guan KL (1999) Identification of functional elements of p18INK4C essential for binding and inhibition of cyclin-dependent kinase (CDK) 4 and CDK6. Cancer Res 59:558–564

    CAS  PubMed  Google Scholar 

  31. Berton S, Pellizzari I, Fabris L et al (2014) Genetic characterization of p27(kip1) and stathmin in controlling cell proliferation in vivo. Cell Cycle 13:3100–3111. https://doi.org/10.4161/15384101.2014.949512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cheng M, Olivier P, Diehl JA et al (1999) The p21(Cip1) and p27(Kip1) CDK “inhibitors” are essential activators of cyclin D-dependent kinases in murine fibroblasts. EMBO J 18:1571–1583. https://doi.org/10.1093/emboj/18.6.1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Bryja V, Pacherník J, Faldíková L et al (2004) The role of p27(Kip1) in maintaining the levels of D-type cyclins in vivo. Biochim Biophys Acta 1691:105–116. https://doi.org/10.1016/j.bbamcr.2004.01.001

    Article  CAS  PubMed  Google Scholar 

  34. Malumbres M (2014) Cyclin-dependent kinases. Genome Biol 15:122. https://doi.org/10.1186/gb4184

    Article  PubMed  PubMed Central  Google Scholar 

  35. Fujimoto T, Anderson K, Jacobsen SEW et al (2007) Cdk6 blocks myeloid differentiation by interfering with Runx1 DNA binding and Runx1-C/EBPalpha interaction. EMBO J 26:2361–2370. https://doi.org/10.1038/sj.emboj.7601675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Chow YH, Zhu XD, Liu L et al (2010) Role of Cdk4 in lymphocyte function and allergen response. Cell Cycle 9:4922–4930. https://doi.org/10.4161/cc.9.24.14209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Sicinska E, Aifantis I, Le Cam L et al (2003) Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4:451–461

    Article  CAS  PubMed  Google Scholar 

  38. Glickstein SB, Alexander S, Ross ME (2007) Differences in cyclin D2 and D1 protein expression distinguish forebrain progenitor subsets. Cereb Cortex 17:632–642. https://doi.org/10.1093/cercor/bhk008

    Article  PubMed  Google Scholar 

  39. Anders L, Ke N, Hydbring P et al (2011) A systematic screen for CDK4/6 substrates links FOXM1 phosphorylation to senescence suppression in cancer cells. Cancer Cell 20:620–634. https://doi.org/10.1016/j.ccr.2011.10.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhang J, Ji F, Liu Y et al (2014) Ezh2 regulates adult hippocampal neurogenesis and memory. J Neurosci 34:5184–5199. https://doi.org/10.1523/JNEUROSCI.4129-13.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Rodríguez-Díez E, Quereda V, Bellutti F et al (2014) Cdk4 and Cdk6 cooperate in counteracting the INK4 family of inhibitors during murine leukemogenesis. Blood 124:2380–2390. https://doi.org/10.1182/blood-2014-02-555292

    Article  PubMed  Google Scholar 

  42. Bagui TK, Jackson RJ, Agrawal D, Pledger WJ (2000) Analysis of cyclin D3–Cdk4 complexes in fibroblasts expressing and lacking p27(kip1) and p21(cip1). Mol Cell Biol 20:8748–8757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kato A, Takahashi H, Takahashi Y, Matsushime H (1997) Inactivation of the cyclin D-dependent kinase in the rat fibroblast cell line, 3Y1, induced by contact inhibition. J Biol Chem 272:8065–8070

    Article  CAS  PubMed  Google Scholar 

  44. Blain SW, Montalvo E, Massagué J (1997) Differential interaction of the cyclin-dependent kinase (Cdk) inhibitor p27Kip1 with cyclin A-Cdk2 and cyclin D2-Cdk4. J Biol Chem 272:25863–25872. https://doi.org/10.1074/jbc.272.41.25863

    Article  CAS  PubMed  Google Scholar 

  45. Pei X-H, Bai F, Tsutsui T et al (2004) Genetic evidence for functional dependency of p18Ink4c on Cdk4. Mol Cell Biol 24:6653–6664. https://doi.org/10.1128/MCB.24.15.6653-6664.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Martín A, Odajima J, Hunt SL et al (2005) Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27(Kip1) and p21(Cip1). Cancer Cell 7:591–598. https://doi.org/10.1016/j.ccr.2005.05.006

    Article  CAS  PubMed  Google Scholar 

  47. Cerqueira A, Martín A, Symonds CE et al (2014) Genetic characterization of the role of the Cip/Kip family of proteins as cyclin-dependent kinase inhibitors and assembly factors. Mol Cell Biol 34:1452–1459. https://doi.org/10.1128/MCB.01163-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Pierre-Bernard Van Lerberghe for his technical assistance. LN and BM are, respectively, Senior Research Associate and Research Director of the Belgian National Funds for Scientific Research (FRS-FNRS). RV was a postdoctoral researcher of FRS-FNRS. NC and QM were research fellows with the Belgian Fund for Research in Industry and Agriculture (FNRS-FRIA). EG was supported by Marie Curie Action (Cofund) within the EU FP7 program. BM was funded by grants from the FRS-FNRS, the Fonds Léon Fredericq, the Fondation Médicale Reine Elisabeth, Belspo and the Belgian Science Policy (IAP-VII network P7/07).

Author information

Authors and Affiliations

Authors

Contributions

NC, EG, RV and BM designed the concept of the experiments. NC, EG, RV, QM, SV, PB, LN and BM collected data and performed data analysis/interpretation. MGH, PH and LM provided study material. RV and BM wrote the manuscript. BM provided financial support.

Corresponding author

Correspondence to Brigitte Malgrange.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Nicolas Caron and Emmanuelle C. Genin: co-first authors.

Renaud Vandenbosch and Brigitte Malgrange: co-last authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1663 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caron, N., Genin, E.C., Marlier, Q. et al. Proliferation of hippocampal progenitors relies on p27-dependent regulation of Cdk6 kinase activity. Cell. Mol. Life Sci. 75, 3817–3827 (2018). https://doi.org/10.1007/s00018-018-2832-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2832-x

Keywords

Navigation