Skip to main content

Advertisement

Log in

GABA-B1 Receptors are Coupled to the ERK1/2 MAP Kinase Pathway in the Absence of GABA-B2 Subunits

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

In the current model of γ-aminobutyric acid (GABA) B receptor function, there is a requirement for GABA-B1/2 heterodimerisation for targetting to the cell surface. However, different lines of evidence suggest that the GABA-B1 subunit can form a functional receptor in the absence of GABA-B2. We observed coupling of endogenous GABA-B1 receptors in the DI-TNC1 glial cell line to the ERK pathway in response to baclofen even though these cells do not express GABA-B2. GABA-B1A receptors were also able to mediate a rapid, transient, and dose-dependent activation of the ERK1/2 MAP kinase pathway when transfected alone into HEK 293 cells. The response was abolished by Gi/o and MEK inhibition, potentiated by inhibitors of phospholipase C and protein kinase C and did not involve PI-3-kinase activity. Finally, using bioluminescence resonance energy transfer and co-immunoprecipitation, we show the existence of homodimeric GABA-B1A receptors in transfected HEK293 cells. Altogether, our observations show that GABA-B1A receptors are able to activate the ERK1/2 pathway despite the absence of surface targetting partner GABA-B2 in both HEK 293 cells and the DI-TNC1 cell line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Bai, M., Trivedi, S., & Brown, E. M. (1998). Dimerization of the extracellular calcium-sensing receptor (CaR) on the cell surface of CaR-transfected HEK293 cells. The Journal of Biological Chemistry, 273, 23605–23610.

    Article  CAS  PubMed  Google Scholar 

  • Balasubramanian, S., Teissere, J. A., Raju, D. V., & Hall, R. A. (2004). Hetero-oligomerization between GABAA and GABAB receptors regulates GABAB receptor trafficking. The Journal of Biological Chemistry, 279, 18840–18850.

    Article  CAS  PubMed  Google Scholar 

  • Berthele, A., Platzer, S., Weis, S., Conrad, B., & Tolle, T. R. (2001). Expression of GABA(B1) and GABA(B2) mRNA in the human brain. Neuroreport, 12, 3269–3275.

    Article  CAS  PubMed  Google Scholar 

  • Boivin, B., Vaniotis, G., Allen, B. G., & Hebert, T. E. (2008). G protein-coupled receptors in and on the cell nucleus: a new signaling paradigm. Journal of Receptor and Signal Transduction Research, 28, 15–28.

    Article  CAS  PubMed  Google Scholar 

  • Calver, A. R., Michalovich, D., Testa, T. T., Robbins, M. J., Jaillard, C., Hill, J., et al. (2003). Molecular cloning and characterisation of a novel GABAB-related G-protein coupled receptor. Brain Res Mol Brain Res, 110, 305–317.

    Article  CAS  PubMed  Google Scholar 

  • Calver, A. R., Robbins, M. J., Cosio, C., Rice, S. Q., Babbs, A. J., Hirst, W. D., et al. (2001). The C-terminal domains of the GABA(b) receptor subunits mediate intracellular trafficking but are not required for receptor signaling. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 21, 1203–1210.

    CAS  Google Scholar 

  • Clark, J. A., Mezey, E., Lam, A. S., & Bonner, T. I. (2000). Distribution of the GABA(B) receptor subunit gb2 in rat CNS. Brain Research, 860, 41–52.

    Article  CAS  PubMed  Google Scholar 

  • Couve, A., Calver, A. R., Fairfax, B., Moss, S. J., & Pangalos, M. N. (2004). Unravelling the unusual signalling properties of the GABA(B) receptor. Biochemical Pharmacology, 68, 1527–1536.

    Article  CAS  PubMed  Google Scholar 

  • Couve, A., Filippov, A. K., Connolly, C. N., Bettler, B., Brown, D. A., & Moss, S. J. (1998). Intracellular retention of recombinant GABAB receptors. The Journal of Biological Chemistry, 273, 26361–26367.

    Article  CAS  PubMed  Google Scholar 

  • Dario, A., & Tomei, G. (2004). A benefit-risk assessment of baclofen in severe spinal spasticity. Drug safety: An International Journal of Medical Toxicology and Drug Experience, 27, 799–818.

    CAS  Google Scholar 

  • David, M., Richer, M., Mamarbachi, A. M., Villeneuve, L. R., Dupre, D. J., & Hebert, T. E. (2006). Interactions between GABA-B(1) receptors and Kir 3 inwardly rectifying potassium channels. Cellular Signalling, 18, 2172–2181.

    Article  CAS  PubMed  Google Scholar 

  • Dunigan, C. D., Hoang, Q., Curran, P. K., & Fishman, P. H. (2002). Complexity of agonist- and cyclic AMP-mediated downregulation of the human beta 1-adrenergic receptor: role of internalization, degradation, and mRNA destabilization. Biochemistry, 41, 8019–8030.

    Article  CAS  PubMed  Google Scholar 

  • Dunlap, K. (1981). Two types of gamma-aminobutyric acid receptor on embryonic sensory neurones. British Journal of Pharmacology, 74, 579–585.

    CAS  PubMed  Google Scholar 

  • Dunlap, K., & Fischbach, G. D. (1981). Neurotransmitters decrease the calcium conductance activated by depolarization of embryonic chick sensory neurones. The Journal of Physiology, 317, 519–535.

    CAS  PubMed  Google Scholar 

  • Dupre, D. J., & Hebert, T. E. (2006). Biosynthesis and trafficking of seven transmembrane receptor signalling complexes. Cellular Signalling, 18, 1549–1559.

    Article  CAS  PubMed  Google Scholar 

  • Froestl, W., Gallagher, M., Jenkins, H., Madrid, A., Melcher, T., Teichman, S., et al. (2004). SGS742: the first GABA(B) receptor antagonist in clinical trials. Biochemical Pharmacology, 68, 1479–1487.

    Article  CAS  PubMed  Google Scholar 

  • Gerber, D., Sal-Man, N., & Shai, Y. (2004). Two motifs within a transmembrane domain, one for homodimerization and the other for heterodimerization. The Journal of Biological Chemistry, 279, 21177–21182.

    Article  CAS  PubMed  Google Scholar 

  • Havlickova, M., Prezeau, L., Duthey, B., Bettler, B., Pin, J. P., & Blahos, J. (2002). The intracellular loops of the GB2 subunit are crucial for G-protein coupling of the heteromeric gamma-aminobutyrate B receptor. Molecular Pharmacology, 62, 343–350.

    Article  CAS  PubMed  Google Scholar 

  • Hebert, T. E., Gales, C., & Rebois, R. V. (2006). Detecting and imaging protein-protein interactions during G protein-mediated signal transduction in vivo and in situ by using fluorescence-based techniques. Cell biochemistry and Biophysics, 45, 85–109.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, G. L., & Lapadat, R. (2002). Mitogen-activated protein kinase pathways mediated by ERK, JNK, and p38 protein kinases. Science, 298, 1911–1912.

    Article  CAS  PubMed  Google Scholar 

  • Jones, K. A., Borowsky, B., Tamm, J. A., Craig, D. A., Durkin, M. M., Dai, M., et al. (1998). GABA(B) receptors function as a heteromeric assembly of the subunits GABA(B)R1 and GABA(B)R2. Nature, 396, 674–679.

    Article  CAS  PubMed  Google Scholar 

  • Kantamneni, S., Correa, S. A., Hodgkinson, G. K., Meyer, G., Vinh, N. N., Henley, J. M., et al. (2007). GISP: a novel brain-specific protein that promotes surface expression and function of GABA(B) receptors. Journal of Neurochemistry, 100, 1003–1017.

    Article  CAS  PubMed  Google Scholar 

  • Kaupmann, K., Huggel, K., Heid, J., Flor, P. J., Bischoff, S., Mickel, S. J., et al. (1997). Expression cloning of GABA(B) receptors uncovers similarity to metabotropic glutamate receptors. Nature, 386, 239–246.

    Article  CAS  PubMed  Google Scholar 

  • Kaupmann, K., Malitschek, B., Schuler, V., Heid, J., Froestl, W., Beck, P., et al. (1998). GABA(B)-receptor subtypes assemble into functional heteromeric complexes. Nature, 396, 683–687.

    Article  CAS  PubMed  Google Scholar 

  • Kenakin, T. (2003). Ligand-selective receptor conformations revisited: the promise and the problem. Trends in Pharmacological Sciences, 24, 346–354.

    Article  CAS  PubMed  Google Scholar 

  • Kunishima, N., Shimada, Y., Tsuji, Y., Sato, T., Yamamoto, M., Kumasaka, T., et al. (2000). Structural basis of glutamate recognition by a dimeric metabotropic glutamate receptor. Nature, 407, 971–977.

    Article  CAS  PubMed  Google Scholar 

  • Li, X., Lee, J. W., Graves, L. M., & Earp, H. S. (1998). Angiotensin II stimulates ERK via two pathways in epithelial cells: protein kinase C suppresses a G-protein coupled receptor-EGF receptor transactivation pathway. The EMBO Journal, 17, 2574–2583.

    Article  CAS  PubMed  Google Scholar 

  • Lujan, R., Shigemoto, R., & Lopez-Bendito, G. (2005). Glutamate and GABA receptor signalling in the developing brain. Neuroscience, 130, 567–580.

    Article  CAS  PubMed  Google Scholar 

  • Mamane, Y., Petroulakis, E., Rong, L., Yoshida, K., Ler, L. W., & Sonenberg, N. (2004). eIF4E–from translation to transformation. Oncogene, 23, 3172–3179.

    Article  CAS  PubMed  Google Scholar 

  • Margeta-Mitrovic, M., Jan, Y. N., & Jan, L. Y. (2000). A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron, 27, 97–106.

    Article  CAS  PubMed  Google Scholar 

  • Martin, D. L., & Barke, K. E. (1998). Are GAD65 and GAD67 associated with specific pools of GABA in brain. Perspect Dev Neurobiol, 5, 119–129.

    CAS  PubMed  Google Scholar 

  • Ng, G. Y., Clark, J., Coulombe, N., Ethier, N., Hebert, T. E., Sullivan, R., et al. (1999). Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity. The Journal of Biological Chemistry, 274, 7607–7610.

    Article  CAS  PubMed  Google Scholar 

  • Nicoll, R. A. (2004). My close encounter with GABA(B) receptors. Biochemical Pharmacology, 68, 1667–1674.

    Article  CAS  PubMed  Google Scholar 

  • Pontier, S. M., Lahaie, N., Ginham, R., St-Gelais, F., Bonin, H., Bell, D. J., et al. (2006). Coordinated action of NSF and PKC regulates GABA(B) receptor signaling efficacy. The EMBO Journal, 25, 2698–2709.

    Article  CAS  PubMed  Google Scholar 

  • Pouyssegur, J., Volmat, V., & Lenormand, P. (2002). Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Biochemical Pharmacology, 64, 755–763.

    Article  CAS  PubMed  Google Scholar 

  • Radany, E. H., Brenner, M., Besnard, F., Bigornia, V., Bishop, J. M., & Deschepper, C. F. (1992). Directed establishment of rat brain cell lines with the phenotypic characteristics of type 1 astrocytes. Proceedings of the National Academy of Sciences of the United States of America, 89, 6467–6471.

    Article  CAS  PubMed  Google Scholar 

  • Rebois, R. V., Robitaille, M., Gales, C., Dupre, D. J., Baragli, A., Trieu, P., et al. (2006). Heterotrimeric G proteins form stable complexes with adenylyl cyclase and Kir3.1 channels in living cells. Journal of Cell Science, 119, 2807–2818.

    Article  CAS  PubMed  Google Scholar 

  • Revankar, C. M., Cimino, D. F., Sklar, L. A., Arterburn, J. B., & Prossnitz, E. R. (2005). A transmembrane intracellular estrogen receptor mediates rapid cell signaling. Science, 307, 1625–1630.

    Article  CAS  PubMed  Google Scholar 

  • Robbins, M. J., Calver, A. R., Filippov, A. K., Hirst, W. D., Russell, R. B., Wood, M. D., et al. (2001). GABA(B2) is essential for g-protein coupling of the GABA(B) receptor heterodimer. The Journal of Neuroscience, 21, 8043–8052.

    CAS  PubMed  Google Scholar 

  • Robbins, M. J., Ciruela, F., Rhodes, A., & McIlhinney, R. A. (1999). Characterization of the dimerization of metabotropic glutamate receptors using an N-terminal truncation of mGluR1alpha. Journal of Neurochemistry, 72, 2539–2547.

    Article  CAS  PubMed  Google Scholar 

  • Romano, C., Yang, W. L., & O’Malley, K. L. (1996). Metabotropic glutamate receptor 5 is a disulfide-linked dimer. The Journal of Biological Chemistry, 271, 28612–28616.

    Article  CAS  PubMed  Google Scholar 

  • Schwarz, D. A., Barry, G., Eliasof, S. D., Petroski, R. E., Conlon, P. J., & Maki, R. A. (2000). Characterization of gamma-aminobutyric acid receptor GABAB(1e), a GABAB(1) splice variant encoding a truncated receptor. The Journal of Biological Chemistry, 275, 32174–32181.

    Article  CAS  PubMed  Google Scholar 

  • Soghomonian, J. J., & Martin, D. L. (1998). Two isoforms of glutamate decarboxylase: why. Trends in Pharmacological Sciences, 19, 500–505.

    Article  CAS  PubMed  Google Scholar 

  • Traverse, S., Gomez, N., Paterson, H., Marshall, C., & Cohen, P. (1992). Sustained activation of the mitogen-activated protein (MAP) kinase cascade may be required for differentiation of PC12 cells. Comparison of the effects of nerve growth factor and epidermal growth factor. The Biochemical Journal, 288(Pt 2), 351–355.

    CAS  PubMed  Google Scholar 

  • Tu, H., Rondard, P., Xu, C., Bertaso, F., Cao, F., Zhang, X., et al. (2007). Dominant role of GABAB2 and Gbetagamma for GABAB receptor-mediated-ERK1/2/CREB pathway in cerebellar neurons. Cellular Signalling, 19, 1996–2002.

    Article  CAS  PubMed  Google Scholar 

  • Vanhoose, A. M., Emery, M., Jimenez, L., & Winder, D. G. (2002). ERK activation by G-protein-coupled receptors in mouse brain is receptor identity-specific. The Journal of Biological Chemistry, 277, 9049–9053.

    Article  CAS  PubMed  Google Scholar 

  • Vernon, E., Meyer, G., Pickard, L., Dev, K., Molnar, E., Collingridge, G. L., et al. (2001). GABA(B) receptors couple directly to the transcription factor ATF4. Molecular and Cellular Neurosciences, 17, 637–645.

    Article  CAS  PubMed  Google Scholar 

  • Villemure, J. F., Adam, L., Bevan, N. J., Gearing, K., Chenier, S., & Bouvier, M. (2005). Subcellular distribution of GABA(B) receptor homo- and hetero-dimers. The Biochemical Journal, 388, 47–55.

    Article  CAS  PubMed  Google Scholar 

  • White, J. H., McIllhinney, R. A., Wise, A., Ciruela, F., Chan, W. Y., Emson, P. C., et al. (2000). The GABAB receptor interacts directly with the related transcription factors CREB2 and ATFx. Proceedings of the National Academy of Sciences of the United States of America, 97, 13967–13972.

    Article  CAS  PubMed  Google Scholar 

  • White, J. H., Wise, A., Main, M. J., Green, A., Fraser, N. J., Disney, G. H., et al. (1998). Heterodimerization is required for the formation of a functional GABA(B) receptor. Nature, 396, 679–682.

    Article  CAS  PubMed  Google Scholar 

  • Whitmarsh, A. J., & Davis, R. J. (1999). Signal transduction by MAP kinases: regulation by phosphorylation-dependent switches. Sci STKE, 1999, PE1.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grant MOP-79354 from the Canadian Institutes of Health Research to T.E.H. T.E.H. is a Chercheur National of the Fonds de Recherche en Santé du Québec. M.R. was supported by a scholarship from the Canadian Institutes of Health Research. We would like to thank Bruce Allen and Jean-Philippe Pin for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Terence E. Hébert.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1

(GIF 257 KB)

High resolution image file (TIF 1.55 MB)

Supplementary Fig. 2

(GIF 1.55 MB)

High resolution image file (TIF 4.35 MB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richer, M., David, M., Villeneuve, L.R. et al. GABA-B1 Receptors are Coupled to the ERK1/2 MAP Kinase Pathway in the Absence of GABA-B2 Subunits. J Mol Neurosci 38, 67–79 (2009). https://doi.org/10.1007/s12031-008-9163-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-008-9163-6

Keywords

Navigation