Skip to main content

Structural Basis of GABAB Receptor Regulation and Signaling

  • Chapter
  • First Online:
Behavioral Neurobiology of GABAB Receptor Function

Part of the book series: Current Topics in Behavioral Neurosciences ((CTBN,volume 52))

Abstract

GABAB receptors (GBRs), the G protein-coupled receptors for the inhibitory neurotransmitter γ-aminobutyric acid (GABA), activate Go/i-type G proteins that regulate adenylyl cyclase, Ca2+ channels, and K+ channels. GBR signaling to enzymes and ion channels influences neuronal activity, plasticity processes, and network activity throughout the brain. GBRs are obligatory heterodimers composed of GB1a or GB1b subunits with a GB2 subunit. Heterodimeric GB1a/2 and GB1b/2 receptors represent functional units that associate in a modular fashion with regulatory, trafficking, and effector proteins to generate receptors with distinct physiological functions. This review summarizes current knowledge on the structure, organization, and functions of multi-protein GBR complexes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balasco N, Smaldone G, Vitagliano L (2019) The structural versatility of the BTB domains of KCTD proteins and their recognition of the GABAB receptor. Biomol Ther 9(8). pii: E323

    Google Scholar 

  • Biel M, Wahl-Schott C, Michalakis S, Zong X (2009) Hyperpolarization-activated cation channels: from genes to function. Physiol Rev 89:847–885

    CAS  PubMed  Google Scholar 

  • Biermann B, Ivankova-Susankova K, Bradaia A, Abdel Aziz S, Besseyrias V, Kapfhammer JP, Missler M, Gassmann M, Bettler B (2010) The sushi domains of GABAB receptors function as axonal targeting signals. J Neurosci 30:1385–1394

    CAS  PubMed  PubMed Central  Google Scholar 

  • Binet V, Brajon C, Le Corre L, Acher F, Pin JP, Prezeau L (2004) The heptahelical domain of GABAB2 is activated directly by CGP7930, a positive allosteric modulator of the GABAB receptor. J Biol Chem 279:29085–29091

    CAS  PubMed  Google Scholar 

  • Binet V, Duthey B, Lecaillon J, Vol C, Quoyer J, Labesse G, Pin JP, Prezeau L (2007) Common structural requirements for heptahelical domain function in class A and class C G protein-coupled receptors. J Biol Chem 282:12154–12163

    CAS  PubMed  Google Scholar 

  • Bischoff S, Leonhard S, Reymann N, Schuler V, Shigemoto R, Kaupmann K, Bettler B (1999) Spatial distribution of GABABR1 receptor mRNA and binding sites in the rat brain. J Comp Neurol 412:1–16

    CAS  PubMed  Google Scholar 

  • Blein S, Ginham R, Uhrin D, Smith BO, Soares DC, Veltel S, McIlhinney RA, White JH, Barlow PN (2004) Structural analysis of the complement control protein (CCP) modules of GABAB receptor 1a: only one of the two CCP modules is compactly folded. J Biol Chem 279:48292–48306

    CAS  PubMed  Google Scholar 

  • Brock C, Boudier L, Maurel D, Blahos J, Pin JP (2005) Assembly-dependent surface targeting of the heterodimeric GABAB receptor is controlled by COPI but not 14-3-3. Mol Biol Cell 16:5572–5578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burmakina S, Geng Y, Chen Y, Fan QR (2014) Heterodimeric coiled-coil interactions of human GABAB receptor. Proc Natl Acad Sci U S A 111:6958–6963

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calebiro D, Rieken F, Wagner J, Sungkaworn T, Zabel U, Borzi A, Cocucci E, Zurn A, Lohse MJ (2013) Single-molecule analysis of fluorescently labeled G-protein-coupled receptors reveals complexes with distinct dynamics and organization. Proc Natl Acad Sci U S A 110:743–748

    CAS  PubMed  Google Scholar 

  • Chen LH, Sun B, Zhang Y, Xu TJ, Xia ZX, Liu JF, Nan FJ (2014) Discovery of a negative allosteric modulator of GABAB receptors. ACS Med Chem Lett 5:742–747

    CAS  PubMed  PubMed Central  Google Scholar 

  • Christopher JA, Aves SJ, Bennett KA, Dore AS, Errey JC, Jazayeri A, Marshall FH, Okrasa K, Serrano-Vega MJ, Tehan BG et al (2015) Fragment and structure-based drug discovery for a class C GPCR: discovery of the mGlu5 negative allosteric modulator HTL14242 (3-chloro-5-[6-(5-fluoropyridin-2-yl)pyrimidin-4-yl]benzonitrile). J Med Chem 58:6653–6664

    CAS  PubMed  Google Scholar 

  • Ciruela F, Fernandez-Duenas V, Sahlholm K, Fernandez-Alacid L, Nicolau JC, Watanabe M, Lujan R (2010) Evidence for oligomerization between GABAB receptors and GIRK channels containing the GIRK1 and GIRK3 subunits. Eur J Neurosci 32:1265–1277

    PubMed  Google Scholar 

  • Comps-Agrar L, Kniazeff J, Norskov-Lauritsen L, Maurel D, Gassmann M, Gregor N, Prezeau L, Bettler B, Durroux T, Trinquet E, Pin JP (2011) The oligomeric state sets GABAB receptor signalling efficacy. EMBO J 30:2336–2349

    CAS  PubMed  PubMed Central  Google Scholar 

  • Correale S, Esposito C, Pirone L, Vitagliano L, Di Gaetano S, Pedone E (2013) A biophysical characterization of the folded domains of KCTD12: insights into interaction with the GABAB2 receptor. J Mol Recognit 26:488–495

    CAS  PubMed  Google Scholar 

  • Couve A, Filippov AK, Connolly CN, Bettler B, Brown DA, Moss SJ (1998) Intracellular retention of recombinant GABAB receptors. J Biol Chem 273:26361–26367

    CAS  PubMed  Google Scholar 

  • David M, Richer M, Mamarbachi AM, Villeneuve LR, Dupre DJ, Hebert TE (2006) Interactions between GABA-B1 receptors and Kir 3 inwardly rectifying potassium channels. Cell Signal 18:2172–2181

    CAS  PubMed  Google Scholar 

  • Dinamarca MC, Raveh A, Schneider A, Fritzius T, Fruh S, Rem PD, Stawarski M, Lalanne T, Turecek R, Choo M et al (2019) Complex formation of APP with GABAB receptors links axonal trafficking to amyloidogenic processing. Nat Commun 10:1331

    PubMed  PubMed Central  Google Scholar 

  • Doly S, Shirvani H, Gata G, Meye FJ, Emerit MB, Enslen H, Achour L, Pardo-Lopez L, Yang SK, Armand V et al (2016) GABAB receptor cell-surface export is controlled by an endoplasmic reticulum gatekeeper. Mol Psychiatry 21:480–490

    CAS  PubMed  Google Scholar 

  • Dore AS, Okrasa K, Patel JC, Serrano-Vega M, Bennett K, Cooke RM, Errey JC, Jazayeri A, Khan S, Tehan B et al (2014) Structure of class C GPCR metabotropic glutamate receptor 5 transmembrane domain. Nature 511:557–562

    CAS  PubMed  Google Scholar 

  • Dupuis DS, Relkovic D, Lhuillier L, Mosbacher J, Kaupmann K (2006) Point mutations in the transmembrane region of GABAB2 facilitate activation by the positive modulator N,N′-dicyclopentyl-2-methylsulfanyl-5-nitro-pyrimidine-4,6-diamine (GS39783) in the absence of the GABAB1 subunit. Mol Pharmacol 70:2027–2036

    Google Scholar 

  • Duthey B, Caudron S, Perroy J, Bettler B, Fagni L, Pin JP, Prezeau L (2002) A single subunit (GB2) is required for G-protein activation by the heterodimeric GABAB receptor. J Biol Chem 277:3236–3241

    CAS  PubMed  Google Scholar 

  • Fowler CE, Aryal P, Suen KF, Slesinger PA (2007) Evidence for association of GABA(B) receptors with Kir3 channels and regulators of G protein signalling (RGS4) proteins. J Physiol 580:51–65

    CAS  PubMed  Google Scholar 

  • Freyd T, Warszycki D, Mordalski S, Bojarski AJ, Sylte I, Gabrielsen M (2017) Ligand-guided homology modelling of the GABAB2 subunit of the GABAB receptor. PLoS One 12:e0173889

    PubMed  PubMed Central  Google Scholar 

  • Fritzius T, Bettler B (2020) The organizing principle of GABAB receptor complexes: physiological and pharmacological implications. Basic Clin Pharmacol Toxicol 126(Suppl 6):25–34

    Google Scholar 

  • Fritzius T, Turecek R, Seddik R, Kobayashi H, Tiao J, Rem PD, Metz M, Kralikova M, Bouvier M, Gassmann M, Bettler B (2017) KCTD hetero-oligomers confer unique kinetic properties on hippocampal GABAB receptor-induced K+ currents. J Neurosci 37:1162–1175

    CAS  PubMed  PubMed Central  Google Scholar 

  • Galvez T, Parmentier ML, Joly C, Malitschek B, Kaupmann K, Kuhn R, Bittiger H, Froestl W, Bettler B, Pin JP (1999) Mutagenesis and modeling of the GABAB receptor extracellular domain support a venus flytrap mechanism for ligand binding. J Biol Chem 274:13362–13369

    CAS  PubMed  Google Scholar 

  • Galvez T, Urwyler S, Prezeau L, Mosbacher J, Joly C, Malitschek B, Heid J, Brabet I, Froestl W, Bettler B et al (2000) Ca2+ requirement for high-affinity g-aminobutyric acid (GABA) binding at GABAB receptors: involvement of serine 269 of the GABABR1 subunit. Mol Pharmacol 57:419–426

    CAS  PubMed  Google Scholar 

  • Galvez T, Duthey B, Kniazeff J, Blahos J, Rovelli G, Bettler B, Prezeau L, Pin JP (2001) Allosteric interactions between GB1 and GB2 subunits are required for optimal GABAB receptor function. EMBO J 20:2152–2159

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gassmann M, Bettler B (2012) Regulation of neuronal GABAB receptor functions by subunit composition. Nat Rev Neurosci 13:380–394

    CAS  PubMed  Google Scholar 

  • Geng Y, Xiong D, Mosyak L, Malito DL, Kniazeff J, Chen Y, Burmakina S, Quick M, Bush M, Javitch JA et al (2012) Structure and functional interaction of the extracellular domain of human GABAB receptor GBR2. Nat Neurosci 15:970–978

    CAS  PubMed  PubMed Central  Google Scholar 

  • Geng Y, Bush M, Mosyak L, Wang F, Fan QR (2013) Structural mechanism of ligand activation in human GABAB receptor. Nature 504:254–259

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory KJ, Dong EN, Meiler J, Conn PJ (2011) Allosteric modulation of metabotropic glutamate receptors: structural insights and therapeutic potential. Neuropharmacology 60:66–81

    CAS  PubMed  Google Scholar 

  • Grunewald S, Schupp BJ, Ikeda SR, Kuner R, Steigerwald F, Kornau HC, Kohr G (2002) Importance of the g-aminobutyric acidB receptor C-termini for G-protein coupling. Mol Pharmacol 61:1070–1080

    CAS  PubMed  Google Scholar 

  • Hanack C, Moroni M, Lima WC, Wende H, Kirchner M, Adelfinger L, Schrenk-Siemens K, Tappe-Theodor A, Wetzel C, Kuich PH et al (2015) GABA blocks pathological but not acute TRPV1 pain signals. Cell 160:759–770

    CAS  PubMed  Google Scholar 

  • Hannan S, Wilkins ME, Smart TG (2012) Sushi domains confer distinct trafficking profiles on GABAB receptors. Proc Natl Acad Sci U S A 109:12171–12176

    CAS  PubMed  PubMed Central  Google Scholar 

  • Havlickova M, Prezeau L, Duthey B, Bettler B, Pin JP, Blahos J (2002) The intracellular loops of the GB2 subunit are crucial for G-protein coupling of the heteromeric g-aminobutyrate B receptor. Mol Pharmacol 62:343–350

    CAS  PubMed  Google Scholar 

  • Ivankova K, Turecek R, Fritzius T, Seddik R, Prezeau L, Comps-Agrar L, Pin JP, Fakler B, Besseyrias V, Gassmann M, Bettler B (2013) Up-regulation of GABAB receptor signaling by constitutive assembly with the K+ channel tetramerization domain-containing protein 12 (KCTD12). J Biol Chem 288:24848–24856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaupmann K, Huggel K, Heid J, Flor PJ, Bischoff S, Mickel SJ, McMaster G, Angst C, Bittiger H, Froestl W, Bettler B (1997) Expression cloning of GABAB receptors uncovers similarity to metabotropic glutamate receptors. Nature 386:239–246

    CAS  PubMed  Google Scholar 

  • Kaupmann K, Malitschek B, Schuler V, Heid J, Froestl W, Beck P, Mosbacher J, Bischoff S, Kulik A, Shigemoto R et al (1998) GABAB-receptor subtypes assemble into functional heteromeric complexes. Nature 396:683–687

    CAS  PubMed  Google Scholar 

  • Kniazeff J, Saintot PP, Goudet C, Liu J, Charnet A, Guillon G, Pin JP (2004) Locking the dimeric GABAB G-protein-coupled receptor in its active state. J Neurosci 24:370–377

    CAS  PubMed  PubMed Central  Google Scholar 

  • Koehl A, Hu H, Feng D, Sun B, Zhang Y, Robertson MJ, Chu M, Kobilka TS, Laeremans T, Steyaert J et al (2019) Structural insights into the activation of metabotropic glutamate receptors. Nature 566:79–84

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuner R, Kohr G, Grunewald S, Eisenhardt G, Bach A, Kornau HC (1999) Role of heteromer formation in GABAB receptor function. Science 283:74–77

    CAS  PubMed  Google Scholar 

  • Margeta-Mitrovic M, Jan YN, Jan LY (2000) A trafficking checkpoint controls GABAB receptor heterodimerization. Neuron 27:97–106

    CAS  PubMed  Google Scholar 

  • Marshall FH, Jones KA, Kaupmann K, Bettler B (1999) GABAB receptors – the first 7TM heterodimers. Trends Pharmacol Sci 20:396–399

    CAS  PubMed  Google Scholar 

  • Matsushita S, Nakata H, Kubo Y, Tateyama M (2010) Ligand-induced rearrangements of the GABAB receptor revealed by fluorescence resonance energy transfer. J Biol Chem 285:10291–10299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Maurel D, Comps-Agrar L, Brock C, Rives ML, Bourrier E, Ayoub MA, Bazin H, Tinel N, Durroux T, Prezeau L et al (2008) Cell-surface protein-protein interaction analysis with time-resolved FRET and snap-tag technologies: application to GPCR oligomerization. Nat Methods 5:561–567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Metz M, Gassmann M, Fakler B, Schaeren-Wiemers N, Bettler B (2011) Distribution of the auxiliary GABAB receptor subunits KCTD8, 12, 12b, and 16 in the mouse brain. J Comp Neurol 519:1435–1454

    CAS  PubMed  Google Scholar 

  • Monnier C, Tu H, Bourrier E, Vol C, Lamarque L, Trinquet E, Pin JP, Rondard P (2011) Trans-activation between 7TM domains: implication in heterodimeric GABAB receptor activation. EMBO J 30:32–42

    CAS  PubMed  Google Scholar 

  • Ng GY, Clark J, Coulombe N, Ethier N, Hebert TE, Sullivan R, Kargman S, Chateauneuf A, Tsukamoto N, McDonald T et al (1999) Identification of a GABAB receptor subunit, gb2, required for functional GABAB receptor activity. J Biol Chem 274:7607–7610

    CAS  PubMed  Google Scholar 

  • Olofsson L, Felekyan S, Doumazane E, Scholler P, Fabre L, Zwier JM, Rondard P, Seidel CA, Pin JP, Margeat E (2014) Fine tuning of sub-millisecond conformational dynamics controls metabotropic glutamate receptors agonist efficacy. Nat Commun 5:5206

    CAS  PubMed  Google Scholar 

  • Pagano A, Rovelli G, Mosbacher J, Lohmann T, Duthey B, Stauffer D, Ristig D, Schuler V, Meigel I, Lampert C et al (2001) C-terminal interaction is essential for surface trafficking but not for heteromeric assembly of GABAB receptors. J Neurosci 21:1189–1202

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pin JP, Bettler B (2016) Organization and functions of mGlu and GABAB receptor complexes. Nature 540:60–68

    CAS  PubMed  Google Scholar 

  • Pinkas DM, Sanvitale CE, Bufton JC, Sorrell FJ, Solcan N, Chalk R, Doutch J, Bullock AN (2017) Structural complexity in the KCTD family of Cullin3-dependent E3 ubiquitin ligases. Biochem J 474:3747–3761

    CAS  PubMed  Google Scholar 

  • Rajalu M, Fritzius T, Adelfinger L, Jacquier V, Besseyrias V, Gassmann M, Bettler B (2015) Pharmacological characterization of GABAB receptor subtypes assembled with auxiliary KCTD subunits. Neuropharmacology 88:145–154

    CAS  PubMed  Google Scholar 

  • Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D et al (2011) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477:549–555

    CAS  PubMed  PubMed Central  Google Scholar 

  • Restituito S, Couve A, Bawagan H, Jourdain S, Pangalos MN, Calver AR, Freeman KB, Moss SJ (2005) Multiple motifs regulate the trafficking of GABAB receptors at distinct checkpoints within the secretory pathway. Mol Cell Neurosci 28:747–756

    CAS  PubMed  Google Scholar 

  • Rice HC, de Malmazet D, Schreurs A, Frere S, Van Molle I, Volkov AN, Creemers E, Vertkin I, Nys J, Ranaivoson FM et al (2019) Secreted amyloid-b precursor protein functions as a GABABR1a ligand to modulate synaptic transmission. Science 363(6423). pii: eaao4827

    Google Scholar 

  • Rondard P, Huang S, Monnier C, Tu H, Blanchard B, Oueslati N, Malhaire F, Li Y, Trinquet E, Labesse G et al (2008) Functioning of the dimeric GABAB receptor extracellular domain revealed by glycan wedge scanning. EMBO J 27:1321–1332

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schwenk J, Metz M, Zolles G, Turecek R, Fritzius T, Bildl W, Tarusawa E, Kulik A, Unger A, Ivankova K et al (2010) Native GABAB receptors are heteromultimers with a family of auxiliary subunits. Nature 465:231–235

    CAS  PubMed  Google Scholar 

  • Schwenk J, Perez-Garci E, Schneider A, Kollewe A, Gauthier-Kemper A, Fritzius T, Raveh A, Dinamarca MC, Hanuschkin A, Bildl W et al (2016) Modular composition and dynamics of native GABAB receptors identified by high-resolution proteomics. Nat Neurosci 19:233–242

    CAS  PubMed  Google Scholar 

  • Seddik R, Jungblut SP, Silander OK, Rajalu M, Fritzius T, Besseyrias V, Jacquier V, Fakler B, Gassmann M, Bettler B (2012) Opposite effects of KCTD subunit domains on GABAB receptor-mediated desensitization. J Biol Chem 287:39869–39877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smaldone G, Pirone L, Pedone E, Marlovits T, Vitagliano L, Ciccarelli L (2016) The BTB domains of the potassium channel tetramerization domain proteins prevalently assume pentameric states. FEBS Lett 590:1663–1671

    CAS  PubMed  Google Scholar 

  • Stewart GD, Comps-Agrar L, Norskov-Lauritsen LB, Pin JP, Kniazeff J (2018) Allosteric interactions between GABAB1 subunits control orthosteric binding sites occupancy within GABAB oligomers. Neuropharmacology 136:92–101

    CAS  PubMed  Google Scholar 

  • Sun B, Chen L, Liu L, Xia Z, Pin JP, Nan F, Liu J (2016) A negative allosteric modulator modulates GABAB-receptor signalling through GB2 subunits. Biochem J 473:779–787

    CAS  PubMed  Google Scholar 

  • Turecek R, Schwenk J, Fritzius T, Ivankova K, Zolles G, Adelfinger L, Jacquier V, Besseyrias V, Gassmann M, Schulte U et al (2014) Auxiliary GABAB receptor subunits uncouple G protein bg subunits from effector channels to induce desensitization. Neuron 82:1032–1044

    CAS  PubMed  Google Scholar 

  • Urwyler S, Gjoni T, Koljatic J, Dupuis DS (2005) Mechanisms of allosteric modulation at GABAB receptors by CGP7930 and GS39783: effects on affinities and efficacies of orthosteric ligands with distinct intrinsic properties. Neuropharmacology 48:343–353

    CAS  PubMed  Google Scholar 

  • Vigot R, Barbieri S, Brauner-Osborne H, Turecek R, Shigemoto R, Zhang YP, Lujan R, Jacobson LH, Biermann B, Fritschy JM et al (2006) Differential compartmentalization and distinct functions of GABAB receptor variants. Neuron 50:589–601

    CAS  PubMed  PubMed Central  Google Scholar 

  • White JH, Wise A, Main MJ, Green A, Fraser NJ, Disney GH, Barnes AA, Emson P, Foord SM, Marshall FH (1998) Heterodimerization is required for the formation of a functional GABAB receptor. Nature 396:679–682

    CAS  PubMed  Google Scholar 

  • Winkler M, Biswas S, Berger SM, Küchler M, Enkel T, Preisendörfer L, Choo M, Früh S, Rem PD, Enkel T et al (2019) Pianp deficiency links GABAB receptor signaling and hippocampal and cerebellar neuronal cell composition to autism-like behavior. Mol Psychiatry. https://doi.org/10.1038/s41380-019-0519-9

  • Wise A, Green A, Main MJ, Wilson R, Fraser N, Marshall FH (1999) Calcium sensing properties of the GABAB receptor. Neuropharmacology 38:1647–1656

    CAS  PubMed  Google Scholar 

  • Wu H, Wang C, Gregory KJ, Han GW, Cho HP, Xia Y, Niswender CM, Katritch V, Meiler J, Cherezov V et al (2014) Structure of a class C GPCR metabotropic glutamate receptor 1 bound to an allosteric modulator. Science 344:58–64

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xue L, Sun Q, Zhao H, Rovira X, Gai S, He Q, Pin JP, Liu J, Rondard P (2019) Rearrangement of the transmembrane domain interfaces associated with the activation of a GPCR hetero-oligomer. Nat Commun 10:2765

    PubMed  PubMed Central  Google Scholar 

  • Yamada S, Nelson WJ (2007) Synapses: sites of cell recognition, adhesion, and functional specification. Annu Rev Biochem 76:267–294

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zheng S, Abreu N, Levitz J, Kruse AC (2019) Structural basis for KCTD-mediated rapid desensitization of GABAB signalling. Nature 567:127–131

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zuo H, Glaaser I, Zhao Y, Kurinov I, Mosyak L, Wang H, Liu J, Park J, Frangaj A, Sturchler E et al (2019) Structural basis for auxiliary subunit KCTD16 regulation of the GABAB receptor. Proc Natl Acad Sci U S A 116:8370–8379

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank M. Gassmann for helpful discussions. This work was supported by grants of the Swiss Science Foundation (31003A-172881) and the National Center for Competences in Research (NCCR) “Synapsy, Synaptic Basis of Mental Health Disease” (to B.B).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shin Isogai or Bernhard Bettler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Fritzius, T., Stawarski, M., Isogai, S., Bettler, B. (2020). Structural Basis of GABAB Receptor Regulation and Signaling. In: Vlachou, S., Wickman, K. (eds) Behavioral Neurobiology of GABAB Receptor Function. Current Topics in Behavioral Neurosciences, vol 52. Springer, Cham. https://doi.org/10.1007/7854_2020_147

Download citation

Publish with us

Policies and ethics