Skip to main content
Log in

The Cytoskeleton in Oligodendrocytes

Microtubule Dynamics in Health and Disease

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

Oligodendrocytes have a complex cytoarchitecture and are characterized by an elaborate network of microtubules. They provide the tracks for organelle trafficking and the intracellular translocation of myelin-specific gene products. The integrity of the cytoskeleton is an essential determinant of the function and survival of oligodendrocytes. Microtubule growth and stability are regulated by microtubule-associated proteins. Oligodendrocytes contain a number of microtubule-associated proteins, including the tau proteins, which are developmentally regulated and especially prominent in the branching points of the cellular processes. Process outgrowth is regulated by the interaction of Fyn kinase with the cytoskeleton and by microtubule-severing proteins, such as stathmin. Alterations or disruption of the cytoskeleton and abundant abnormal aggregates of cytoskeletal proteins often accompany neurodegenerative diseases, and inclusion bodies, resembling protein aggregates found in neurons, are prominent in oligodendroglial lesions in white matter pathology. This review emphasizes the role of the cytoskeleton, particularly of microtubules and their associated proteins, in oligodendrocytes during developmental processes. Furthermore, recent data on protein aggregate formation in oligodendroglial cells, which might occur during aging and disease processes, are summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Albers, D. S., & Augood, S. J. (2001). New insights into progressive supranuclear palsy. Trends in Neurosciences, 24, 347–353.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, S. S. (2000). Spindle assembly and the art of regulating microtubule dynamics by MAPs and Stathmin/Op18. Trends in Cell Biology, 10, 261–267.

    Article  PubMed  CAS  Google Scholar 

  • Baas, P. W. (1999). Microtubules and neuronal polarity: lessons from mitosis. Neuron, 22, 23–31.

    Article  PubMed  CAS  Google Scholar 

  • Barry, C., Pearson, C., & Barbarese, E. (1996). Morphological organization of oligodendrocyte processes during development in culture and in vivo. Developmental Neuroscience, 18, 233–242.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, N. G., & Richter-Landsberg, C. (2006). The dynamic instability of microtubules is required for aggresome formation in oligodendroglial cells after proteolytic stress. Journal of Molecular Neuroscience, 29, 153–168.

    Article  PubMed  CAS  Google Scholar 

  • Buée, L., Bussiere, T., Buee-Scherrer, V., Delacourte, A., & Hof, P. R. (2000). Tau protein isoforms, phosphorylation and role in neurodegenerative disorders. Brain research. Brain research reviews, 33, 95–130.

    Article  PubMed  Google Scholar 

  • Cairns, N. J., Atkinson, P. F., Hanger, D. P., Anderton, B. H., Daniel, S. E., & Lantos, P. L. (1997). Tau protein in the glial cytoplasmic inclusions of multiple system atrophy can be distinguished from abnormal tau in Alzheimer’s disease. Neuroscience Letters, 230, 49–52.

    Article  PubMed  CAS  Google Scholar 

  • Carson, J. H., Worboys, K., Ainger, K., & Barbarese, E. (1997). Translocation of myelin basic protein mRNA in oligodendrocytes requires microtubules and kinesin. Cell Motility and the Cytoskeleton, 38, 318–328.

    Article  PubMed  CAS  Google Scholar 

  • Chin, S. S., & Goldman, J. E. (1996). Glial inclusions in CNS degenerative diseases. Journal of Neuropathology and Experimental Neurology, 55, 499–508.

    PubMed  CAS  Google Scholar 

  • Ciechanover, A., & Brundin, P. (2003). The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg. Neuron, 40, 427–446.

    Article  PubMed  CAS  Google Scholar 

  • Dabir, D. V., Trojanowski, J. Q., Richter-Landsberg, C., Lee, V. M., & Forman, M. S. (2004). Expression of the small heat-shock protein alphaB-crystallin in tauopathies with glial pathology. American Journal of Pathology, 164, 155–166.

    PubMed  CAS  Google Scholar 

  • Dickson, D. W., Lin, W., Liu, W. K., & Yen, S. H. (1999). Multiple system atrophy: a sporadic synucleinopathy. Brain Pathology, 9, 721–732.

    Article  PubMed  CAS  Google Scholar 

  • Dyer, C. A., & Benjamins, J. A. (1989). Organization of oligodendroglial membrane sheets. I: Association of myelin basic protein and 2′,3′-cyclic nucleotide 3′-phosphohydrolase with cytoskeleton. Journal of Neuroscience Research, 24, 201–211.

    Article  PubMed  CAS  Google Scholar 

  • Fass, E., Shvets, E., Degani, I., Hirschberg, K., & Elazar, Z. (2006). Microtubules support production of starvation-induced autophagosomes but not their targeting and fusion with lysosomes. Journal of Biological Chemistry, 281, 36303–36316.

    Article  PubMed  CAS  Google Scholar 

  • Fischer, I., Konola, J., & Cochary, E. (1990). Microtubule associated protein (MAP1B) is present in cultured oligodendrocytes and co-localizes with tubulin. Journal of Neuroscience Research, 27, 112–124.

    Article  PubMed  CAS  Google Scholar 

  • Forman, M. S., Trojanowski, J. Q., & Lee, V. M. (2004). Neurodegenerative diseases: a decade of discoveries paves the way for therapeutic breakthroughs. Natural Medicines, 10, 1055–1063.

    Article  CAS  Google Scholar 

  • Galiano, M. R., Andrieux, A., Deloulme, J. C., Bosc, C., Schweitzer, A., Job, D. et al. (2006). Myelin basic protein functions as a microtubule stabilizing protein in differentiated oligodendrocytes. Journal of Neuroscience Research, 84, 534–541.

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Mata, R., Bebok, Z., Sorscher, E. J., & Sztul, E. S. (1999). Characterization and dynamics of aggresome formation by a cytosolic GFP-chimera. Journal of Cell Biology, 146, 1239–1254.

    Article  PubMed  CAS  Google Scholar 

  • Giasson, B. I., Lee, V. M. Y., & Trojanowski, J. Q. (2004). Animal models of neurodegenerative dementing disorders othe than Alzheimer`s disease. Clinical Neuroscience Research, 3, 427–436.

    Article  CAS  Google Scholar 

  • Goedert, M. (2001). The significance of tau and alpha-synuclein inclusions in neurodegenerative diseases. Current Opinion in Genetics & Development, 11, 343–351.

    Article  CAS  Google Scholar 

  • Goedert, M., Crowther, R. A., & Garner, C. C. (1991). Molecular characterization of microtubule-associated proteins tau and MAP2. Trends in Neurosciences, 14, 193–199.

    Article  PubMed  CAS  Google Scholar 

  • Goedert, M., Spillantini, M. G., & Davies, S. W. (1998). Filamentous nerve cell inclusions in neurodegenerative diseases. Current Opinion in Neurobiology, 8, 619–632.

    Article  PubMed  CAS  Google Scholar 

  • Goldbaum, O., Oppermann, M., Handschuh, M., Dabir, D., Zhang, B., Forman, M. S. et al. (2003). Proteasome inhibition stabilizes tau inclusions in oligodendroglial cells that occur after treatment with okadaic acid. Journal of Neuroscience, 23, 8872–8880.

    PubMed  CAS  Google Scholar 

  • Goldbaum, O., & Richter-Landsberg, C. (2004). Proteolytic stress causes heat shock protein induction, tau ubiquitination, and the recruitment of ubiquitin to tau-positive aggregates in oligodendrocytes in culture. Journal of Neuroscience, 24, 5748–5757.

    Article  PubMed  CAS  Google Scholar 

  • Gorath, M., Stahnke, T., Mronga, T., Goldbaum, O., & Richter-Landsberg, C. (2001). Developmental changes of tau protein and mRNA in cultured rat brain oligodendrocytes. Glia, 36, 89–101.

    Article  PubMed  CAS  Google Scholar 

  • Götz, J., Tolnay, M., Barmettler, R., Chen, F., Probst, A., & Nitsch, R. M. (2001). Oligodendroglial tau filament formation in transgenic mice expressing G272V tau. European Journal of Neuroscience, 13, 2131–2140.

    Article  PubMed  Google Scholar 

  • Grinspan, J. (2002). Cells and signaling in oligodendrocyte development. Journal of Neuropathology and Experimental Neurology, 61, 297–306.

    PubMed  CAS  Google Scholar 

  • Higuchi, M., Ishihara, T., Zhang, B., Hong, M., Andreadis, A., Trojanowski, J. et al. (2002). Transgenic mouse model of tauopathies with glial pathology and nervous system degeneration. Neuron, 35, 433–446.

    Article  PubMed  CAS  Google Scholar 

  • Higuchi, M., Zhang, B., Forman, M. S., Yoshiyama, Y., Trojanowski, J. Q., & Lee, V. M. (2005). Axonal degeneration induced by targeted expression of mutant human tau in oligodendrocytes of transgenic mice that model glial tauopathies. Journal of Neuroscience, 25, 9434–9443.

    Article  PubMed  CAS  Google Scholar 

  • Hirokawa, N., Noda, Y., & Okada, Y. (1998). Kinesin and dynein superfamily proteins in organelle transport and cell division. Current Opinion in Cell Biology, 10, 60–73.

    Article  PubMed  CAS  Google Scholar 

  • Irving, E. A., Nicoll, J., Graham, D. I., & Dewar, D. (1996). Increased tau immunoreactivity in oligodendrocytes following human stroke and head injury. Neuroscience Letters, 213, 189–192.

    PubMed  CAS  Google Scholar 

  • Johnston, J. A., Ward, C. L., & Kopito, R. R. (1998). Aggresomes: a cellular response to misfolded proteins. Journal of Cell Biology, 143, 1883–1898.

    Article  PubMed  CAS  Google Scholar 

  • Keller, J. N., Gee, J., & Ding, Q. (2002). The proteasome in brain aging. Ageing Research Reviews, 1, 279–293.

    Article  PubMed  CAS  Google Scholar 

  • Klein, C., Kramer, E. M., Cardine, A. M., Schraven, B., Brandt, R., & Trotter, J. (2002). Process outgrowth of oligodendrocytes is promoted by interaction of fyn kinase with the cytoskeletal protein tau. Journal of Neuroscience, 22, 698–707.

    PubMed  CAS  Google Scholar 

  • Komori, T. (1999). Tau-positive glial inclusions in progressive supranuclear palsy, corticobasal degeneration and Pick’s disease. Brain Pathology, 9, 663–679.

    Article  PubMed  CAS  Google Scholar 

  • Kopito, R. R. (2000). Aggresomes, inclusion bodies and protein aggregation. Trends in Cell Biology, 10, 524–530.

    Article  PubMed  CAS  Google Scholar 

  • Kramer, E. M., Klein, C., Koch, T., Boytinck, M., & Trotter, J. (1999). Compartmentation of Fyn kinase with glycosylphosphatidylinositol-anchored molecules in oligodendrocytes facilitates kinase activation during myelination. Journal of Biological Chemistry, 274, 29042–29049.

    Article  PubMed  CAS  Google Scholar 

  • Laferriere, N. B., MacRae, T. H., & Brown, D. L. (1997). Tubulin synthesis and assembly in differentiating neurons. Biochemistry and Cell Biology, 75, 103–117.

    Article  PubMed  CAS  Google Scholar 

  • Lantos, P. L. (1998). The definition of multiple system atrophy: a review of recent developments. Journal of Neuropathology and Experimental Neurology, 57, 1099–1111.

    PubMed  CAS  Google Scholar 

  • Lee, V. M., Giasson, B. I., & Trojanowski, J. Q. (2004). More than just two peas in a pod: common amyloidogenic properties of tau and alpha-synuclein in neurodegenerative diseases. Trends Neuroscience, 27, 129–134.

    Article  CAS  Google Scholar 

  • Lee, V. M., Goedert, M., & Trojanowski, J. Q. (2001). Neurodegenerative tauopathies. Annual Review of Neuroscience, 24, 1121–1159.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J., Gravel, M., Zhang, R., Thibault, P., & Braun, P. E. (2005). Process outgrowth in oligodendrocytes is mediated by CNP, a novel microtubule assembly myelin protein. Journal of Cell Biology, 170, 661–673.

    Article  PubMed  CAS  Google Scholar 

  • Lee, J. C., Mayer-Proschel, M., & Rao, M. S. (2000). Gliogenesis in the central nervous system. Glia, 30, 105–121.

    Article  PubMed  CAS  Google Scholar 

  • Liang, X., Draghi, N. A., & Resh, M. D. (2004). Signaling from integrins to Fyn to Rho family GTPases regulates morphologic differentiation of oligodendrocytes. Journal of Neuroscience, 24, 7140–7149.

    Article  PubMed  CAS  Google Scholar 

  • Lin, W. L., Lewis, J., Yen, S. H., Hutton, M., & Dickson, D. W. (2003). Filamentous tau in oligodendrocytes and astrocytes of transgenic mice expressing the human tau isoform with the P301L mutation. American Journal of Pathology, 162, 213–218.

    PubMed  CAS  Google Scholar 

  • Liu, A., Muggironi, M., Marin-Husstege, M., & Casaccia-Bonnefil, P. (2003). Oligodendrocyte process outgrowth in vitro is modulated by epigenetic regulation of cytoskeletal severing proteins. Glia, 44, 264–274.

    Article  PubMed  Google Scholar 

  • Liu, A., Stadelmann, C., Moscarello, M., Bruck, W., Sobel, A., Mastronardi, F. G. et al. (2005). Expression of stathmin, a developmentally controlled cytoskeleton-regulating molecule, in demyelinating disorders. Journal of Neuroscience, 25, 737–747.

    Article  PubMed  CAS  Google Scholar 

  • LoPresti, P., Szuchet, S., Papasozomenos, S. C., Zinkowski, R. P., & Binder, L. I. (1995). Functional implications for the microtubule-associated protein tau: localization in oligodendrocytes. Proceedings of the National Academy of Sciences of the United States of America, 92, 10369–10373.

    Article  PubMed  CAS  Google Scholar 

  • Lüders, J., & Stearns, T. (2007). Microtubule-organizing centres: a re-evaluation. Nature reviews. Molecular cell biology, 8, 161–167.

    Article  PubMed  CAS  Google Scholar 

  • Lunn, K. F., Baas, P. W., & Duncan, I. D. (1997). Microtubule organization and stability in the oligodendrocyte. Journal of Neuroscience, 17, 4921–4932.

    PubMed  CAS  Google Scholar 

  • Miller, D. W., Cookson, M. R., & Dickson, D. W. (2004). Glial cell inclusions and the pathogenesis of neurodegenerative diseases. Neuron Glia Biology, 1, 13–21.

    Article  PubMed  Google Scholar 

  • Muller, R., Heinrich, M., Heck, S., Blohm, D., & Richter-Landsberg, C. (1997). Expression of microtubule-associated proteins MAP2 and tau in cultured rat brain oligodendrocytes. Cell & Tissue Research, 288, 239–249.

    Article  CAS  Google Scholar 

  • Nixon, R. A. (2006). Autophagy in neurodegenerative disease: friend, foe or turncoat? Trends in Neurosciences, 29, 528–535.

    Article  PubMed  CAS  Google Scholar 

  • Osterhout, D. J., Wolven, A., Wolf, R. M., Resh, M. D., & Chao, M. V. (1999). Morphological differentiation of oligodendrocytes requires activation of Fyn tyrosine kinase. Journal of Cell Biology, 145, 1209–1218.

    Article  PubMed  CAS  Google Scholar 

  • Ozon, S., Guichet, A., Gavet, O., Roth, S., & Sobel, A. (2002). Drosophila stathmin: a microtubule-destabilizing factor involved in nervous system formation. Molecular Biology of the Cell, 13, 698–710.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, S. E., Warrington, A. E., & Bansal, R. (1993). The oligodendrocyte and its many cellular processes. Trends in Cell Biology, 3, 191–197.

    Article  PubMed  CAS  Google Scholar 

  • Quarles R. H., Macklin W. B., & Morell P. (2006). Myelin formation, structure and biochemistry. In G. J. Siegel, R. W. Albers, S. T. Brady, & D. L. Price (Eds.), Basic Neurochemistry (7th ed., pp. 51–71). New York: Elsevier.

    Google Scholar 

  • Raynaud-Messina, Merdes, A. (2007). γ-Tubulin complexes and microtubule organization. Current Opinion in Cell Biology, 19, 24–30.

    Article  PubMed  CAS  Google Scholar 

  • Richter-Landsberg C. (2000). The oligodendroglia cytoskeleton in health and disease. Journal of Neuroscience Research, 59, 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Richter-Landsberg C. (2007). Heat shock proteins: expression and functional roles in nerve cells and glia. In C. Richter-Landsberg (Ed.), Heat Shock Proteins in Neural Cells (pp 1–12). New York: Springer.

    Google Scholar 

  • Richter-Landsberg, C., & Bauer, N. G. (2004). Tau-inclusion body formation in oligodendroglia: the role of stress proteins and proteasome inhibition. International Journal of Developmental Neuroscience, 22, 443–451.

    Article  PubMed  CAS  Google Scholar 

  • Richter-Landsberg, C., & Goldbaum, O. (2003). Stress proteins in neural cells: functional roles in health and disease. Cellular and Molecular Life Sciences, 60, 337–349.

    Article  PubMed  CAS  Google Scholar 

  • Richter-Landsberg, C., & Goldbaum, O. (2007). Small heat shock proteins and the cytoskeleton. In C. Richter-Landsberg (Ed.), Heat Shock Proteins in Neural Cells (pp. 13–24). New York: Springer.

    Google Scholar 

  • Richter-Landsberg, C., & Gorath, M. (1999). Developmental regulation of alternatively spliced isoforms of mRNA encoding MAP2 and tau in rat brain oligodendrocytes during culture maturation. Journal of Neuroscience Research, 56, 259–270.

    Article  PubMed  CAS  Google Scholar 

  • Richter-Landsberg, C., & Heinrich, M. (1996). OLN-93: a new permanent oligodendroglia cell line derived from primary rat brain glial cultures. Journal of Neuroscience Research, 45, 161–173.

    Article  PubMed  CAS  Google Scholar 

  • Ross, C. A., & Poirier, M. A. (2005). Opinion: What is the role of protein aggregation in neurodegeneration? Nature Reviews. Molecular Cell Biology, 6, 891–898.

    Article  PubMed  CAS  Google Scholar 

  • Sherman, M. Y., & Goldberg, A. L. (2001). Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron, 29, 15–32.

    Article  PubMed  CAS  Google Scholar 

  • Smith, R. (2004). Moving molecules: mRNA trafficking in Mammalian oligodendrocytes and neurons. Neuroscientist, 10, 495–500.

    Article  PubMed  CAS  Google Scholar 

  • Song, J., Goetz, B. D., Baas, P. W., & Duncan, I. D. (2001). Cytoskeletal reorganization during the formation of oligodendrocyte processes and branches. Molecular and Cellular Neurosciences, 17, 624–636.

    Article  PubMed  CAS  Google Scholar 

  • Song, J., O’Connor L. T., Yu, W., Baas, P. W., & Duncan, I. D. (1999). Microtubule alterations in cultured taiep rat oligodendrocytes lead to deficits in myelin membrane formation. Journal of Neurocytology, 28, 671–683.

    Article  PubMed  CAS  Google Scholar 

  • Sperber, B. R., Boyle-Walsh, E. A., Engleka, M. J., Gadue, P., Peterson, A. C., Stein, P. L. et al. (2001). A unique role for Fyn in CNS myelination. Journal of Neuroscience, 21, 2039–2047.

    PubMed  CAS  Google Scholar 

  • Sperber, B. R., & McMorris, F. A. (2001). Fyn tyrosine kinase regulates oligodendroglial cell development but is not required for morphological differentiation of oligodendrocytes. Journal of Neuroscience Research, 63, 303–312.

    Article  PubMed  CAS  Google Scholar 

  • Takeda, A., Arai, N., Komori, T., Iseki, E., Kato, S., & Oda, M. (1997). Tau immunoreactivity in glial cytoplasmic inclusions in multiple system atrophy. Neuroscience Letters, 234, 63–66.

    Article  PubMed  CAS  Google Scholar 

  • Terada, N., Kidd, G. J., Kinter, M., Bjartmar, C., Moran-Jones, K., & Trapp, B. D. (2005). Beta IV tubulin is selectively expressed by oligodendrocytes in the central nervous system. Glia, 50, 212–222.

    Article  PubMed  Google Scholar 

  • Umemori, H., Sato, S., Yagi, T., Aizawa, S., & Yamamoto, T. (1994). Initial events of myelination involve Fyn tyrosine kinase signalling. Nature, 367, 572–576.

    Article  PubMed  CAS  Google Scholar 

  • Vouyiouklis, D. A., & Brophy, P. J. (1993). Microtubule-associated protein MAP1B expression precedes the morphological differentiation of oligodendrocytes. Journal of Neuroscience Research, 35, 257–267.

    Article  PubMed  CAS  Google Scholar 

  • Vouyiouklis, D. A., & Brophy, P. J. (1995). Microtubule-associated proteins in developing oligodendrocytes: transient expression of a MAP2c isoform in oligodendrocyte precursors. Journal of Neuroscience Research, 42, 803–817.

    Article  PubMed  CAS  Google Scholar 

  • Wiese, C., & Zheng, Y. (2006). Microtubule nucleation: γ-tubulin and beyond. Journal of Cell Science, 119, 4143–4153.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, R., & Brophy, P. J. (1989). Role for the oligodendrocyte cytoskeleton in myelination. Journal of Neuroscience Research, 22, 439–448.

    Article  PubMed  CAS  Google Scholar 

  • Zamora-Leon, S. P., Lee, G., Davies, P., & Shafit-Zagardo, B. (2001). Binding of Fyn to MAP-2c through an SH3 binding domain. Regulation of the interaction by ERK2. Journal of Biological Chemistry, 276, 39950–39958.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Deutsche Forschungsgemeinschaft, Germany and the Society for Progressive Supranuclear Palsy (CurePSP), USA. I thank Dr. Olaf Goldbaum for the help with the graphic art and for providing Fig. 3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Richter-Landsberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Richter-Landsberg, C. The Cytoskeleton in Oligodendrocytes. J Mol Neurosci 35, 55–63 (2008). https://doi.org/10.1007/s12031-007-9017-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-9017-7

Keywords

Navigation