Skip to main content

Advertisement

Log in

Role of Liver and Plasma Lipoproteins in Selective Transport of n-3 Fatty Acids to Tissues: A Comparative Study of 14C-DHA and 3H-Oleic Acid Tracers

  • Published:
Journal of Molecular Neuroscience Aims and scope Submit manuscript

Abstract

We conducted a study aimed at a direct comparison of the plasma dynamics and uptake of docosahexaenoic (DHA) and oleic (OA) fatty acids by various organs. 14C-DHA and 3H-OA were intravenously co-injected into mice. At 5 min after injection, more than 40% of the 14C-DHA, but less than 20% of the 3H-OA, labels was associated with the liver. Heart uptake of 14C-DHA was three to four times greater compared to the 3H-OA label. Brain incorporation of 14C-DHA slowly rose to 0.7% at 24 h, but it remained at the 1–1.5% level for 3H-OA. Total 14C activity in plasma reached 2% of the injected dose at 20 min and leveled off at 0.5% after 1.5 h. Fifteen percent of 14C-DHA plasma activity at 30 min was associated with non-esterified fatty acids, whereas about 85% was recovered in triglycerides in very low-density lipoprotein (VLDL) and LDL fractions. Only 30% of 3H-OA derived activity was found in the VLDL fraction at 30 min. All 3H activity in plasma at later time points was in catabolite fractions. These findings demonstrate that liver plays an important role in the initial selectivity for DHA. It is likely that DHA is specifically taken up by liver, esterified, loaded into lipoproteins, and then delivered to brain, heart, and other target tissues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

OA:

oleic acid

DHA:

docosahexaenoic acid

CE:

cholesterol ester

NEFA:

non-esterified fatty acid

PL:

phospholipid

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

TG:

triglycerides

DG:

diglycerides

MG:

monoglycerides

PUFA:

polyunsaturated fatty acid

References

  • Abumrad, N., Harmon, C., & Ibrahimi, A. (1998). Membrane transport of long-chain fatty acids: Evidence for a facilitated process. Journal of Lipid Research, 39, 2309–2318.

    PubMed  CAS  Google Scholar 

  • Agren, J. J., Julkunen, A., & Penttila, I. (1992). Rapid separation of serum-lipids for fatty-acid analysis by a single aminopropyl column. Journal of Lipid Research, 33, 1871–1876.

    PubMed  CAS  Google Scholar 

  • Anderson, G. J., & Connor, W. E. (1988). Uptake of fatty acids by the developing rat brain. Lipids, 23, 286–290.

    Article  PubMed  CAS  Google Scholar 

  • Balendiran, G. K., Schnutgen, F., Scapin, G., Borchers, T., Xhong, N., Lim, K., et al. (2000). Crystal structure and thermodynamic analysis of human brain fatty acid-binding protein. Journal of Biological Chemistry, 275, 27045–27054.

    PubMed  CAS  Google Scholar 

  • Bazan, N. G., & Scott, B. L. (1990). Dietary omega-3 fatty acids and accumulation of docosahexaenoic acid in rod photoreceptor cells of the retina and at synapses. Upsala Journal of Medical Sciences, 48, 97–107.

    PubMed  CAS  Google Scholar 

  • Billman, G. E., Kang, J. X., & Leaf, A. (1999). Prevention of sudden cardiac death by dietary pure omega-3 polyunsaturated fatty acids in dogs. Circulation, 99, 2452–2457.

    PubMed  CAS  Google Scholar 

  • Bligh, E. G., & Dyer, W. J. (1959). A rapid method of total lipid extraction and purification. Canadian Journal of Biochemistry and Physiology, 37, 911–917.

    PubMed  CAS  Google Scholar 

  • bo-Hashema, K. A. H., Cake, M. H., Lukas, M. A., & Knudsen J. (1999). Evaluation of the affinity and turnover number of both hepatic mitochondrial and microsomal carnitine acyltransferases: Relevance to intracellular partitioning of acyl-CoAs. Biochemistry, 38, 15840–15847.

    Article  CAS  Google Scholar 

  • Campbell, F. M., Gordon, M. J., & Dutta-Roy, A. K. (1998). Placental membrane fatty acid-binding protein preferentially binds arachidonic and docosahexaenoic acids. Life Sciences, 63, 235–240.

    Article  PubMed  CAS  Google Scholar 

  • Christie, W. W. (1985). Rapid separation and quantification of lipid classes by high-performance liquid-chromatography and mass (light-scattering) detection. Journal of Lipid Research, 26, 507–512.

    PubMed  CAS  Google Scholar 

  • Christie, W. W. (1986). Separation of lipid classes by high-performance liquid-chromatography with the mass detector. Journal of Chromatography, 361, 396–399.

    Article  PubMed  CAS  Google Scholar 

  • Crabtree, J. T., Gordon, M. J., Campbell, F. M., & Dutta-Roy, A. K. (1998). Differential distribution and metabolism of arachidonic acid and docosahexaenoic acid by human placental choriocarcinoma (BeWo) cells. Molecular and Cellular Biochemistry, 185, 191–198.

    Article  PubMed  CAS  Google Scholar 

  • Cunnane, S. C., Menard, C. R., Likhodii, S. S., Brenna, J. T., & Crawford, M. A. (1999). Carbon recycling into de novo lipogenesis is a major pathway in neonatal metabolism of linoleate and alpha-linolenate. Prostaglandins Leukotrienes and Essential Fatty Acids, 60, 387–392.

    Article  CAS  Google Scholar 

  • de Lorgeril, M., Salen, P., Defaye, P., Mabo, P. & Paillard, F. (2002). Dietary prevention of sudden cardiac death. European Heart Journal, 23, 277–285.

    Article  PubMed  CAS  Google Scholar 

  • Dehouck, B., Fenart, L., Dehouck, M. P., Pierce, A., Torpier, G., & Cecchelli, R. (1997). A new function for the LDL receptor: Transcytosis of LDL across the blood-brain barrier. Journal of Cell Biology, 138, 877–889.

    Article  PubMed  CAS  Google Scholar 

  • Desautels, M., & Dulos, R. A. (1988). Unchanged brown adipose tissue thermogenic capacity of mice selected for high body weight. Faseb Journal, 2, A1611.

    Google Scholar 

  • Dutta-Roy, A. K. (2000a). Cellular uptake of long-chain fatty acids: Role of membrane-associated fatty-acid-binding/transport proteins. Cellular and Molecular Life Sciences, 57, 1360–1372.

    Article  PubMed  CAS  Google Scholar 

  • Dutta-Roy, A. K. (2000b). Transport mechanisms for long-chain polyunsaturated fatty acids in the human placenta. American Journal of Clinical Nutrition, 71, 315S–322S.

    PubMed  CAS  Google Scholar 

  • Edelstein, C. (1986). General properties of plasma lipoproteins and apolipoproteins. In A. M. Scanu & A. A. Spector (Eds.), Biochemistry and biology of plasma lipoproteins (pp. 495–505). New York: Marcel Dekker.

    Google Scholar 

  • Edmond, J. (2001). Essential polyunsaturated fatty acids and the barrier to the brain—The components of a model for transport. Journal of Molecular Neuroscience, 16, 181–193.

    Article  PubMed  CAS  Google Scholar 

  • Edmond, J., Higa, T. A., Korsak, R. A., Bergner, E. A., & Lee, W. N. P. (1998). Fatty acid transport and utilization for the developing brain. Journal of Neurochemistry, 70, 1227–1234.

    Article  PubMed  CAS  Google Scholar 

  • Edmond, J., Korsak, R. A., Morrow, J. W., Torokboth, G., & Catlin, D. H. (1991). Dietary cholesterol and the origin of cholesterol in the brain of developing rats. Journal of Nutrition, 121, 1323–1330.

    PubMed  CAS  Google Scholar 

  • Ekstrom, B., Nilsson, A., & Akesson, B. (1989). Lipolysis of polyenoic fatty acid esters of human chylomicrons by lipoprotein lipase. European Journal of Clinical Investigation, 19, 259–264.

    Article  PubMed  CAS  Google Scholar 

  • Folch, J., Lees, M., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of BiologicaL Chemistry, 226, 497–509.

    PubMed  CAS  Google Scholar 

  • Gartner, K., Reulecke, W., Hackbarth, H., & Wollnik, F. (1987). Regression between muscular mass and body size in the comparison of mice, rats, rabbits, dogs, man and horses. Deutsche Tierarztliche Wochenschrift, 94, 52–53.

    PubMed  CAS  Google Scholar 

  • Gibney, M. J., & Daly, E. (1994). The incorporation of N-3 polyunsaturated fatty-acids into plasma-lipid and lipoprotein fractions in the postprandial phase in healthy-volunteers. European Journal of Clinical Nutrition, 48, 866–872.

    PubMed  CAS  Google Scholar 

  • Goti, D., Hrzenjak, A., Levak-Frank, S., Frank, S., van der Westhuyzen, D. R., Malle, E., et al. (2001). Scavenger receptor class B, type I is expressed in porcine brain capillary endothelial cells and contributes to selective uptake of HDL-associated vitamin E. Journal of Neurochemistry, 76, 498–508.

    Article  PubMed  CAS  Google Scholar 

  • Haggarty, P., Page, K., Abramovich, D. R., Ashton, J., & Brown, D. (1997). Long-chain polyunsaturated fatty acid transport across the perfused human placenta. Placenta, 18, 635–642.

    Article  PubMed  CAS  Google Scholar 

  • Harris, W. S., Park, Y., & Isley, W. L. (2003). Cardiovascular disease and long-chain omega-3 fatty acids. Current Opinion in Lipidology, 14, 9–14.

    Article  PubMed  CAS  Google Scholar 

  • Heath, R. B., Karpe, F., Milne, R. W., Burdge, G. C., Wootton, S. A., & Frayn, K. N. (2003). Selective partitioning of dietary fatty acids into the VLDL TG pool in the early postprandial period. Journal of Lipid Research, 44, 2065–2072.

    Article  PubMed  CAS  Google Scholar 

  • Herz, J. (2001). The LDL receptor gene family: (Un)expected signal transducers in the brain. Neuron, 29, 571–581.

    Article  PubMed  CAS  Google Scholar 

  • Herz, J., & Bock, H. H. (2002). Lipoprotein receptors in the nervous system. Annual Review of Biochemistry, 71, 405–434.

    Article  PubMed  CAS  Google Scholar 

  • Hirafuji, M., Machida, T., Hamaue, N., & Minami, M. (2003). Cardiovascular protective effects of n-3 polyunsaturated fatty acids with special emphasis on docosahexaenoic acid. Journal of Pharmacological Sciences, 92, 308–316.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J. X., & Leaf, A. (1996). Evidence that free polyunsaturated fatty acids modify Na+ channels by directly binding to the channel proteins. Proceedings of the National Academy of Sciences of the United States of America, 93, 3542–3546.

    Article  PubMed  CAS  Google Scholar 

  • Kang, J. X., & Leaf, A. (2000). Prevention of fatal cardiac arrhythmias by polyunsaturated fatty acids. American Journal of Clinical Nutrition, 71, 202S–207S.

    PubMed  CAS  Google Scholar 

  • Lagarde, M., Bernoud, N., Brossard, N., Lemaitre-Delaunay, D., Thies, F., Croset, M., et al. (2001). Lysophosphatidylcholine as a preferred carrier form of docosahexaenoic acid to the brain. Journal of Molecular Neuroscience, 16, 201–204.

    Article  PubMed  CAS  Google Scholar 

  • Lands, W. E. M. (2003). Diets could prevent many diseases. Lipids, 38, 317–321.

    Article  PubMed  CAS  Google Scholar 

  • Lang, C. A., & Davis, R. A. (1990). Fish oil fatty acids impair VLDL assembly and or secretion by cultured rat hepatocytes. Journal of Lipid Research, 31, 2079–2086.

    PubMed  CAS  Google Scholar 

  • Larque, E., Demmelmair, H., Berger, B., Hasbargen, U., & Koletzko, B. (2003). In vivo investigation of the placental transfer of C-13-labeled fatty acids in humans. Journal of Lipid Research, 44, 49–55.

    Article  PubMed  CAS  Google Scholar 

  • Leaf, A., Kang, J. X., Xiao, Y. F., Billman, G. E., & Voskuyl, R. A. (1999). Functional and electrophysiologic effects of polyunsaturated fatty acids on excitable tissues: heart and brain. Prostaglandins Leukotrienes and Essential Fatty Acids, 60, 307–312.

    Article  CAS  Google Scholar 

  • Leaf, A., Xiao, Y. F., Kang, J. X., & Billman, G. E. (2003). Prevention of sudden cardiac death by n-3 polyunsaturated fatty acids. Pharmacology & Therapeutics, 98, 355–377.

    Article  CAS  Google Scholar 

  • Lottenberg, A. M. P., Oliveira, H. C. F., Nakandakare, E. R., & Quintao, E. C. R. (1992). Effect of dietary fish oil on the rate of very low-density-lipoprotein triacylglycerol formation and on the metabolism of chylomicrons. Lipids, 27, 326–330.

    Article  PubMed  CAS  Google Scholar 

  • Marbois, B. N., Ajie, H. O., Korsak, R. A., Sensharma, D. K., & Edmond, J. (1992). The origin of palmitic acid in brain of the developing rat. Lipids, 27, 587–592.

    Article  PubMed  CAS  Google Scholar 

  • Martin, D. D., Robbins, M. E. C., Spector, A. A., Wen, B. C., & Hussey, D. H. (1996). The fatty acid composition of human gliomas differs from that found in nonmalignant brain tissue. Lipids, 31, 1283–1288.

    Article  PubMed  CAS  Google Scholar 

  • McArthur, M. J., Atshaves, B. P., Frolov, A., Foxworth, W. D., Kier, A. B., & Schroeder, F. (1999). Cellular uptake and intracellular trafficking of long chain fatty acids. Journal of Lipid Research, 40, 1371–1383.

    PubMed  CAS  Google Scholar 

  • Melin, T., Qi, C., Bengtssonolivecrona, G., Akesson, B., & Nilsson, A. (1991). Hydrolysis of chylomicron polyenoic fatty acid esters with lipoprotein lipase and hepatic lipase. Biochimica et Biophysica Acta, 1075, 259–266.

    PubMed  CAS  Google Scholar 

  • Meresse, S., Delbart, C., Fruchart, J. C., & Cecchelli, R. (1989). Low-density lipoprotein receptor on endothelium of brain capillaries. Journal of Neurochemistry, 53, 340–345.

    Article  PubMed  CAS  Google Scholar 

  • Mitchell, D. C., Gawrisch, K., Litman, B. J., & Salem, N. (1998). Why is docosahexaenoic acid essential for nervous system function? Biochemical Society Transactions, 26, 365–370.

    PubMed  CAS  Google Scholar 

  • Moriguchi, T., Loewke, J., Garrison, M., Catalan, J. N., & Salem, N. (2001). Reversal of docosahexaenoic acid deficiency in the rat brain, retina, liver, and serum. Journal of Lipid Research, 42, 419–427.

    PubMed  CAS  Google Scholar 

  • Morris, M. D., & Chaikoff, L. L. (1961). Concerning incorporation of labeled cholesterol, fed to the mothers, into brain cholesterol of 20-day-old suckling rats. Journal of Neurochemistry, 8, 226–229.

    Article  PubMed  CAS  Google Scholar 

  • Nair, S. S. D., Leitch, J. W., Falconer, J., & Garg, M. L. (1997). Prevention of cardiac arrhythmia by dietary (n-3) polyunsaturated fatty acids and their mechanism of action. Journal of Nutrition, 127, 383–393.

    PubMed  CAS  Google Scholar 

  • Nair, S. S. D., Leitch, J., Falconer, J., & Garg, M. L. (1999). Cardiac (n-3) non-esterified fatty acids are selectively increased in fish oil-fed pigs following myocardial ischemia. Journal of Nutrition, 129, 1518–1523.

    PubMed  CAS  Google Scholar 

  • Norris, A. W., & Spector, A. A. (2002). Very long chain n-3 and n-6 polyunsaturated fatty acids bind strongly to liver fatty acid-binding protein. Journal of Lipid Research, 43, 646–653.

    PubMed  CAS  Google Scholar 

  • Panzenboeck, U., Balazs, Z., Sovic, A., Hrzenjak, A., Levak-Frank, S., Wintersperger, A., et al. (2002). ABCA1 and scavenger receptor class B, type I, are modulators of reverse sterol transport at an in vitro blood-brain barrier constituted of porcine brain capillary endothelial cells. Journal of Biological Chemistry, 277, 42781–42789.

    Article  PubMed  CAS  Google Scholar 

  • Pardridge, W. M., & Mietus, L. J. (1980). Palmitate and cholesterol transport through the blood–brain barrier. Journal of Neurochemistry, 34, 463–466.

    Article  PubMed  CAS  Google Scholar 

  • Parks, J. S., Johnson, F. L., Wilson, M. D., & Rudel, L. L. (1990). Effect of fish oil diet on hepatic lipid-metabolism in nonhuman primates: Lowering of secretion of hepatic triglyceride but not apoB. Journal of Lipid Research, 31, 455–466.

    PubMed  CAS  Google Scholar 

  • Pawlosky, R., Barnes, A., & Salem, N. (1994). Essential fatty acid metabolism in the feline: relationship between liver and brain production of long-chain polyunsaturated fatty acids. Journal of Lipid Research, 35, 2032–2040.

    PubMed  CAS  Google Scholar 

  • Polozova, A., Gionfriddo, E., & Salem, N., Jr. (2006) Effect of DHA on tissue targeting and metabolism of plasma lipoproteins. Prostaglandins, Leukotrienes and Essential Fatty Acids, 75(3), 183–190.

    Article  CAS  Google Scholar 

  • Pound, E. M., Kang, J. X., & Leaf, A. (2001). Partitioning of polyunsaturated fatty acids, which prevent cardiac arrhythmias, into phospholipid cell membranes. Journal of Lipid Research, 42, 346–351.

    PubMed  CAS  Google Scholar 

  • Rapoport, S. I., Chang, M. C. J., & Spector, A. A. (2001). Delivery and turnover of plasma-derived essential PUFAs in mammalian brain. Journal of Lipid Research, 42, 678–685.

    PubMed  CAS  Google Scholar 

  • Sadou, H., Leger, C. L., Descomps, B., Barjon, J. N., Monnier, L., & Depaulet, A. C. (1995). Differential incorporation of fish-oil eicosapentaenoate and docosahexaenoate into lipids of lipoprotein fractions as related to their glyceryl esterification: A short-term (postprandial) and long-term study in healthy humans. American Journal of Clinical Nutrition, 62, 1193–1200.

    PubMed  CAS  Google Scholar 

  • Salem, N. (1989). Omega-3 fatty acids: Molecular and biochemical aspects. In G. A. Spiller & J. Scala, (Eds), New protective roles for selected nutrients (pp. 109–228). New York: Alan R. Liss, Inc.

    Google Scholar 

  • Schneider, W. J., & Nimpf, J. (2003). LDL receptor relatives at the crossroad of endocytosis and signaling. Cellular and Molecular Life Sciences, 60, 892–903.

    Article  PubMed  CAS  Google Scholar 

  • Scott, B. L., & Bazan, N. G. (1989). Membrane docosahexaenoate is supplied to the developing brain and retina by the liver. Proceedings of the National Academy of Sciences of the United States of America, 86, 2903–2907.

    Article  PubMed  CAS  Google Scholar 

  • Sinclair, A. J., & Crawford, M. A. (1972). Incorporation of linolenic acid and docosahexaenoic acid into liver and brain lipids of developing rats. Febs Letters, 26, 127–129.

    Article  PubMed  CAS  Google Scholar 

  • Sovic, A., Balazs, Z., Hrzenjak, A., Reicher, H., Panzenboeck, U., Malle, E., et al. (2004). Scavenger receptor class B, type I mediates uptake of lipoprotein-associated phosphatidylcholine by primary porcine cerebrovascular endothelial cells. Neuroscience Letters, 368, 11–14.

    Article  PubMed  CAS  Google Scholar 

  • Speake, B. K., Deans, E. A., & Powell, K. A. (2003). Differential incorporation of docosahexaenoic and arachidonic acids by the yolk sac membrane of the avian embryo. Comparative Biochemistry and Physiology B. Biochemistry & Molecular Biology, 136, 357–367.

    Article  CAS  Google Scholar 

  • Spector, A. A. (2001). Plasma free fatty acid and lipoproteins as sources of polyunsaturated fatty acid for the brain. Journal of Molecular Neuroscience, 16, 159–165.

    Article  PubMed  CAS  Google Scholar 

  • Srivastava, R. A. K. (2003). Scavenger receptor class B type I expression in murine brain and regulation by estrogen and dietary cholesterol. Journal of the Neurological Sciences, 210, 11–18.

    Article  PubMed  CAS  Google Scholar 

  • Strickland, D. K., Gonias, S. L., & Argraves, W. S. (2002). Diverse roles for the LDL receptor family. Trends in Endocrinology and Metabolism, 13, 66–74.

    Article  PubMed  CAS  Google Scholar 

  • Weylandt, K. H., Kang, J. X., & Leaf, A. (1996). Polyunsaturated fatty acids exert antiarrhythmic actions as free acids rather than in phospholipids. Lipids, 31, 977–982.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norman Salem Jr.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Polozova, A., Salem, N. Role of Liver and Plasma Lipoproteins in Selective Transport of n-3 Fatty Acids to Tissues: A Comparative Study of 14C-DHA and 3H-Oleic Acid Tracers. J Mol Neurosci 33, 56–66 (2007). https://doi.org/10.1007/s12031-007-0039-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12031-007-0039-y

Keywords

Navigation