Skip to main content
Log in

The fatty acid composition of human gliomas differs from that found in nonmalignant brain tissue

  • Article
  • Published:
Lipids

Abstract

To compare the fatty acid composition of tumor tissue from glioma patients with that of normal brain tissue, tissue samples were obtained from 13 glioma patients and from 3 nonmalignant patients. Following lipid extraction, total fatty acid composition was measured using gas-liquid chromatography. Samples were further separated into phospholipids and neutral lipids. Representative samples were then separated into phospholipid classes by thin-layer chromatography and the fatty acid composition assayed. Levels of the polyunsaturated fatty acid (PUFA) docosahexaenoic acid (DHA), were significantly reduced (P=0.029) in the glioma samples compared with normal brain samples; mean values were 4.8±2.9% and 9.2±1.0%, respectively. This reduction in glioma DHA content was also observed in terms of phospholipids (4.6±2.1% vs. 9.6±0.8%,P=0.002). The phosphatidylserine and phosphatidylethanolamine phospholipid classes were reduced in the glioma samples. Differences were also noted in the n-6 PUFA content between glioma and normal brain samples. The glioma content of the n-6 PUFA linoleic acid was significantly greater (P<0.05) than that observed in the control samples in terms of total lipids. Thus, the fatty acid composition of human gliomas differs from that found in nonmalignant brain tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ALA:

α-linolenic acid

CNS:

central nervous system

DHA:

docosahexaenoic acid

GBM:

glioblastoma multiforme

GLC:

gas-liquid chromatography

LA:

linoleic acid

PC:

phosphatidylcholine

PE:

phosphatidylethanolamine

PI:

phosphatidylinositol

PS:

phosphatidylserine

PUFA:

polyunsaturated fatty acid

UI:

unsaturation index

References

  1. Wingo, P.A., Tong, T., and Bolden, S. (1995) Cancer Statistics, 1995,Cancer J. Clinicians 45, 12–13.

    Google Scholar 

  2. DeVita, V.T., Hellman, S., and Rosenberg, S.A. (1993) inCANCER, Principles and Practice of Oncology, 4th edn., pp. 1679–1680, J.P. Lippincott Co., Philadelphia.

    Google Scholar 

  3. Phuphanich, S., Ferall, S., and Greenberg, H. (1993) Long-Term Survival in Malignant Glioma, Prognostic Factors,J. Fl. Med. Ass. 80, 181–184.

    CAS  Google Scholar 

  4. Cheeseman, K.H., Burton. G.W., Ingold, K.V., and Slater, T.F. (1984) Lipid Peroxidation and Lipid Antioxidants in Normal and Tumor Cells,Toxicol. Pathol. 12, 235–239.

    Article  PubMed  CAS  Google Scholar 

  5. Schroeder, F., and Gardiner, J.M. (1984) Membrane Lipids and Enzymes of Cultured High- and Low-Metastatic B16 Melanoma Variants,Cancer Res. 44, 3262–3269.

    PubMed  CAS  Google Scholar 

  6. Burns, C.P., and Spector, A.A. (1987) Membrane Fatty Acid Modification in Tumor Cells: A Potential Therapeutic Adjunct,Lipids 22, 178–184.

    Article  PubMed  CAS  Google Scholar 

  7. Chaudry, A., McClinton, S., Moffat, L.E.F., and Wahle, K.W.J. (1991) Essential Fatty Acid Distribution in the Plasma and Tissue Phospholipids of Patients with Benign and Malignant Prostatic Disease,Br. J. Cancer 64, 1157–1160.

    PubMed  CAS  Google Scholar 

  8. Bougnoux, P., Koscielny, S., Chajes, V., Descamps, P., Couet, C., and Calais, G. (1994) α-Linolenic Acid Content of Adipose Breast Tissue: A Host Determinant of the Risk of Early Metastasis in Breast Cancer,Br. J. Cancer 70, 330–334.

    PubMed  CAS  Google Scholar 

  9. Pritchard, G.A., Jones, D.L., and Mansel, R.E. (1989) Lipids in Breast Carcinogenesis,Br. J. Surg. 76, 1069–1073.

    Article  PubMed  CAS  Google Scholar 

  10. Karmali, R.A., Reichel, P., Cohen, L.A., Terano, T., Hirai, A., Tamura, Y., and Yoshida, S. (1987) The effect of dietary ω-3 Fatty Acids on the DU-145 Transplantable Human Prostatic Cancer,Anticancer Res. 7, 1173–1180.

    PubMed  CAS  Google Scholar 

  11. Folch, J., Lees, M., and Stanley, G.H.S. (1957) A Simple Method for the Isolation and Purification of Total Lipids from Animal Tissues,J. Biol. Chem. 226, 497–509.

    PubMed  CAS  Google Scholar 

  12. Kaduce, T.L., Awad, A.B., Fontenelle, L.J., and Spector, A.A. (1977) Effect of Fatty Acid Saturation on α-Aminoisobutyric Acid Transport in Ehrlich Ascites Cells,J. Biol. Chem. 252, 6624–6630.

    PubMed  CAS  Google Scholar 

  13. White, H.B. (1973) Normal and Neoplastic Human Brain Tissues: Phospholipid, Fatty Acid and Unsaturation Number Modifications in Tumors, inTumor Lipids: Biochemistry and Metabolism (Wood, R., ed.) pp. 75–88, American Oil Chemists’ Society, Champaign.

    Google Scholar 

  14. Cotman, C.C., Blank, M.L., Moehl, A., and Snyder, F. (1969) Lipid Composition of Synaptic Plasma Membranes Isolated from Rat Brain by Zonal Centrifugation,Biochem. 8, 4606–4612.

    Article  CAS  Google Scholar 

  15. Fliesler, S.J., and Anderson, R.E. (1983) Chemistry and Metabolism of Lipids in the Vertebrate Retina,Prog. Lipid Res. 22, 381–392.

    Article  Google Scholar 

  16. Neuringer, M., Connor, W.E., Van Petten, C., and Barstad, L. (1988) The Essentiality of n-3 Fatty Acids for the Development and Function of Retina and Brain,Ann. Rev. Nutr. 8, 517–541.

    Article  CAS  Google Scholar 

  17. Neuringer, M., and Connor, W.E. (1986) Omega-3 Fatty Acids in the Brain and Retina: Evidence for Their Essentiality,Nutr. Rev. 44, 285–294.

    Article  PubMed  CAS  Google Scholar 

  18. Lamptey, M.S., and Walker, B.L. (1976) A Possible Essential Role for Dietary Linolenic Acid in the Development of the Young Rat,J. Nutr. 106, 86–93.

    PubMed  CAS  Google Scholar 

  19. Stein, A.A., Opalka, E., and Peck, F. (1963) Fatty Acid Analysis of Brain Tumors by Gas Phase Chromatography,Arch. Neurol. 8, 50–55.

    PubMed  CAS  Google Scholar 

  20. Sun, G.Y., and Leung, B.S. (1974) Phospholipids and Acyl Groups of Subcellular Membrane Fractions from Human Intracranial Tumors,J. Lipid Res. 15, 423–431.

    PubMed  CAS  Google Scholar 

  21. Ledwozyw, A., and Lutnicki, K. (1992) Phospholipids and Fatty Acids in Human Brain Tumors,Acta Physiol. Hungarica 79, 381–387.

    CAS  Google Scholar 

  22. Bazan, N.G., Birkle, D.L., Tang, W., and Reddy, T.S. (1986) The Accumulation of Free Arachidonic Acid, Diacylglycerols, Prostaglandins, and Lipoxygenase Reaction Products in the Brain During Experimental Epilepsy, inAdvances in Neurology, Vol. 44: Basic Mechanisms of the Epilepsies. Molecular and Cellular Approaches (Delgado-Escueta, A.V., Ward, A.A., and Woodbury, D.M., eds.) pp. 879–902, Raven Press, New York.

    Google Scholar 

  23. Birkle, D.L. and Bazan, N.G. (1987) Effects of Bicuculline-Induced Epilepticus on Prostaglandins and Hydroxyeicosatetraenoic Acids in Rat Brain Subcellular Fractions,J. Neurochem. 48, 1768–1778.

    Article  PubMed  CAS  Google Scholar 

  24. White, H.B, Galli, C., and Paoletti, R. (1971) Ethanolamine Phosphoglyceride Fatty Acids in Aging Human Brain,J. Neurochem. 18, 1337–1339.

    Article  PubMed  CAS  Google Scholar 

  25. Horrobin, D.F., Manku, M.S., Hillman, H., Iain, A., and Glen, M. (1991) Fatty Acid Levels in the Brains of Schizophrenics and Normal Controls,Biol. Psychiatry 30, 795–805.

    Article  PubMed  CAS  Google Scholar 

  26. Bartoli, G.M., Bartoli, S., Galcotti, T., and Bartoli, E. (1980) Superoxide Dismutase Content and Microsomal Lipid Composition of Tumors with Different Growth Rates,Biochim. Biophys. Acta 620, 205–211.

    PubMed  CAS  Google Scholar 

  27. Dunbar, L.M., and Bailey, J.M. (1975) Enzyme Deletions and Essential Fatty Acid Metabolism in Cultured Cells,J. Biol. Chem. 250, 1152–1154.

    CAS  Google Scholar 

  28. De Antueno, R.J., Niedfield, G., and De Tomas, M.E. (1988) Microsomal Fatty Acid Desaturation and Elongation in a Human Lung Carcinoma Grown in Nude Mice,Biochem. Int. 16, 413–420.

    PubMed  Google Scholar 

  29. Liepkalns, V.A., and Spector, A.A. (1975) Alteration of the Fatty Acid Composition of Ehrlich Ascites Tumor Cells,Biochem. Biophys. Res. Commun. 63, 1043–1047.

    Article  PubMed  CAS  Google Scholar 

  30. Rose, D.P., Rayburn. J., Hatala. M.A., and Connolly, J.M. (1994) Effects of Dietary Fish Oil on Fatty Acids and Eicosanoids in Metastasizing Human Breast Cancer Cells,Nutr. Cancer 22, 131–141.

    Article  PubMed  CAS  Google Scholar 

  31. Spector, A.A., and Burns, C.P. (1987) Biological and Therapeutic Potential of Membrane Lipid Modification in Tumors,Cancer Res. 47, 4529–4537.

    PubMed  CAS  Google Scholar 

  32. Begin, M.E., Ells, G., Das, U.N., and Horrobin, D.F. (1986) Differential Killing of Human Carcinoma Cells Supplemented with n-3 and n-6 Polyunsaturated Fatty Acids,J. Natl. Cancer Inst. 77, 1053–1062.

    PubMed  CAS  Google Scholar 

  33. Takeda, S., Sim, P.G., Horrobin, D.F., Chisholm, K.A., Simmons, V.A., Ells, G.W., Jenkins, D.K., and Morse-Fisher, N.L. (1992) Intracellular Free Fatty Acid Release and Lipid Peroxidation in Cultured Human Breast Cancer Cells in Response to γ-Linolenic Acid with Iron (GLA + FE),Int. J. Oncol. 1, 759–763.

    CAS  Google Scholar 

  34. Canuto, R.A., Muzio, G., Bassi, A.M., Maggiora, M., Leonarduzzi, G., Lindahl, R., Dianzani, M.U., and Ferro, M. (1995) Enrichment with Arachidonic Acid Increases the Sensitivity of Hepatoma Cells to the Cytotoxic Effects of Oxidative Stress,Free Rad. Biol. Med. 18, 287–293.

    Article  PubMed  CAS  Google Scholar 

  35. Weisinger, H.S., Vingrys, A.J., and Sinclair, A.J. (1995) dietary Manipulation of Long-Chain Polyunsaturated Fatty Acids in the Retina and Brain of Guinea Pigs,Lipids 30, 471–473.

    Article  PubMed  CAS  Google Scholar 

  36. Salvati, S., Campeggi, L.M., Benedetti, P.C., Di Felice, M., Gentile, V., Nardini, M., and Tomassi, G. (1993) Effects of Dietary Oils on Fatty Acid Composition and Lipid Peroxidation of Brain Membranes (myelin and synaptosomes) in Rats,J. Nutr. Biochem. 4, 346–350.

    Article  CAS  Google Scholar 

  37. Nariai, T., DeGeorge, J.J., Greig, N.H., Genka, S., Rapoport, S.I., and Purdon, A.D. (1994) Differences in Rates of Incorporation of Intravenously Injected Radiolabeled Fatty Acids into Phospholipids of Intracerebrally Implanted Tumor and Brain in Awake Rats,Clin. Exptl. Met. 12, 213–225.

    Article  CAS  Google Scholar 

  38. Das, U.N., Begin, M.E., Ells, G., Huang, Y.S., and Horrobin, D.F. (1987) Polyunsaturated Fatty Acids Augment Free Radical Generation in Tumor Cellsin vitro, Biochem. Biophys. Res. Commun. 145, 15–24.

    Article  PubMed  CAS  Google Scholar 

  39. Hopewell, J.W., van den Aardweg, G.J.M.J., Morris, G.M., Rezvani, M., Robbins, M.E.C., Ross, G.A., Whitehouse, E., Scott, C.A., and Horrobin, D.F. (1994) Unsaturated Lipids as Modulators of Radiation Damage in Normal Tissues, inUnsaturated Lipids and Photodynamic Therapy: New Approaches to Cancer Treatment (Horrobin, D.F., ed.) pp. 88–106, Churchill Communications Europe, London.

    Google Scholar 

  40. Das, U.N., Prasad, V.V.S.K., and Reddy, D.R. (1995) Local Application of γ-Linolenic Acid in the Treatment of Human Gliomas,Cancer Lett. 94, 147–155.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

About this article

Cite this article

Martin, D.D., Robbins, M.E.C., Spector, A.A. et al. The fatty acid composition of human gliomas differs from that found in nonmalignant brain tissue. Lipids 31, 1283–1288 (1996). https://doi.org/10.1007/BF02587914

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02587914

Keywords

Navigation