Skip to main content

Advertisement

Log in

Dantrolene: Mechanisms of Neuroprotection and Possible Clinical Applications in the Neurointensive Care Unit

  • Review Article
  • Published:
Neurocritical Care Aims and scope Submit manuscript

Abstract

Calcium plays a central role in neuronal function and injury. Dantrolene, an inhibitor of the ryanodine receptor, inhibits intracellular calcium release from the sarco-endoplasmic reticulum. We review the available data of dantrolene as a potential neuroprotective agent and briefly summarize its other pharmacologic effects that may have potential applications for patients in the neurointensive care unit (NICU). Areas with the need for continued research are identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ADP:

Adenosine diphosphate

AMPA:

Alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid

ATP:

Adenosine triphosphate

CaM:

Calmodulin

CICR:

Calcium-induced calcium release

CytC:

Cytochrome C

DNA:

Deoxyribonucleic acid

KA:

Kainic acid

MtPTP:

Mitochondrial permeability transition pore

NAD:

Nicotinamide adenine dinucleotide

NMDA:

N-methyl-D-aspartic acid

NO:

Nitric oxide

NOS:

Nitric oxide synthase

PARP:

Poly (ADP-ribose) polymerase

RyR:

Ryanodine receptor

SERCA:

Sarco-endoplasmic reticulum Ca2+-ATPase

UPR:

Unfolded protein response

VGCC:

Voltage gated calcium channel

References

  1. Harrison GG. Control of the malignant hyperpyrexic syndrome in MHS swine by dantrolene sodium. Br J Anaesth. 1975;47(1):62–5. doi:10.1093/bja/47.1.62.

    Article  PubMed  CAS  Google Scholar 

  2. Lin CM, Neeru S, Doufas AG, et al. Dantrolene reduces the threshold and gain for shivering. Anesth Analg. 2004;98(5):1318–24. doi:10.1213/01.ANE.0000108968.21212.D7. Table of contents.

    Article  PubMed  CAS  Google Scholar 

  3. Lydiatt JS, Hill GE. Treatment of heat stroke with dantrolene. JAMA. 1981;246(1):41–2. doi:10.1001/jama.246.1.41.

    Article  PubMed  CAS  Google Scholar 

  4. Hadad E, Cohen-Sivan Y, Heled Y, Epstein Y. Clinical review: treatment of heat stroke: should dantrolene be considered? Crit Care. 2005;9(1):86–91. doi:10.1186/cc2923.

    Article  PubMed  Google Scholar 

  5. Hall AP, Henry JA. Acute toxic effects of ‘Ecstasy’ (MDMA) and related compounds: overview of pathophysiology and clinical management. Br J Anaesth. 2006;96(6):678–85. doi:10.1093/bja/ael078.

    Article  PubMed  CAS  Google Scholar 

  6. Graber MA, Hoehns TB, Perry PJ. Sertraline-phenelzine drug interaction: a serotonin syndrome reaction. Ann Pharmacother. 1994;28(6):732–5.

    PubMed  CAS  Google Scholar 

  7. Frandsen A, Schousboe A. Dantrolene prevents glutamate cytotoxicity and Ca2+ release from intracellular stores in cultured cerebral cortical neurons. J Neurochem. 1991;56(3):1075–8. doi:10.1111/j.1471-4159.1991.tb02031.x.

    Article  PubMed  CAS  Google Scholar 

  8. MacLennan DH, Duff C, Zorzato F, et al. Ryanodine receptor gene is a candidate for predisposition to malignant hyperthermia. Nature. 1990;343(6258):559–61. doi:10.1038/343559a0.

    Article  PubMed  CAS  Google Scholar 

  9. Marks AR, Tempst P, Hwang KS, et al. Molecular cloning and characterization of the ryanodine receptor/junctional channel complex cDNA from skeletal muscle sarcoplasmic reticulum. Proc Natl Acad Sci USA. 1989;86(22):8683–7. doi:10.1073/pnas.86.22.8683.

    Article  PubMed  CAS  Google Scholar 

  10. Balshaw DM, Yamaguchi N, Meissner G. Modulation of intracellular calcium-release channels by calmodulin. J Membr Biol. 2002;185(1):1–8. doi:10.1007/s00232-001-0111-4.

    Article  PubMed  CAS  Google Scholar 

  11. Giannini G, Conti A, Mammarella S, Scrobogna M, Sorrentino V. The ryanodine receptor/calcium channel genes are widely and differentially expressed in murine brain and peripheral tissues. J Cell Biol. 1995;128(5):893–904. doi:10.1083/jcb.128.5.893.

    Article  PubMed  CAS  Google Scholar 

  12. Fruen BR, Mickelson JR, Louis CF. Dantrolene inhibition of sarcoplasmic reticulum Ca2+ release by direct and specific action at skeletal muscle ryanodine receptors. J Biol Chem. 1997;272(43):26965–71. doi:10.1074/jbc.272.43.26965.

    Article  PubMed  CAS  Google Scholar 

  13. Zhao F, Li P, Chen SR, Louis CF, Fruen BR. Dantrolene inhibition of ryanodine receptor Ca2+ release channels. Molecular mechanism and isoform selectivity. J Biol Chem. 2001;276(17):13810–6.

    PubMed  CAS  Google Scholar 

  14. Mody I, MacDonald JF. NMDA receptor-dependent excitotoxicity: the role of intracellular Ca2+ release. Trends Pharmacol Sci. 1995;16(10):356–9. doi:10.1016/S0165-6147(00)89070-7.

    Article  PubMed  CAS  Google Scholar 

  15. Wei H, Perry DC. Dantrolene is cytoprotective in two models of neuronal cell death. J Neurochem. 1996;67(6):2390–8.

    PubMed  CAS  Google Scholar 

  16. Pelletier MR, Wadia JS, Mills LR, Carlen PL. Seizure-induced cell death produced by repeated tetanic stimulation in vitro: possible role of endoplasmic reticulum calcium stores. J Neurophysiol. 1999;81(6):3054–64.

    PubMed  CAS  Google Scholar 

  17. Rutecki PA, Sayin U, Yang Y, Hadar E. Determinants of ictal epileptiform patterns in the hippocampal slice. Epilepsia. 2002;43(Suppl 5):179–83. doi:10.1046/j.1528-1157.43.s.5.34.x.

    Article  PubMed  Google Scholar 

  18. Thorell WE, Leibrock LG, Agrawal SK. Role of RyRs and IP3 receptors after traumatic injury to spinal cord white matter. J Neurotrauma. 2002;19(3):335–42. doi:10.1089/089771502753594909.

    Article  PubMed  CAS  Google Scholar 

  19. Dykes MH. Evaluation of a muscle relaxant: dantrolene sodium (Dantrium). JAMA. 1975;231(8):862–4. doi:10.1001/jama.231.8.862.

    Article  PubMed  CAS  Google Scholar 

  20. Lietman PS, Haslam RH, Walcher JR. Pharmacology of dantrolene sodium in children. Arch Phys Med Rehabil. 1974;55(8):388–92.

    PubMed  CAS  Google Scholar 

  21. Meyler WJ, Mols-Thurkow HW, Wesseling H. Relationship between plasma concentration and effect of dantrolene sodium in man. Eur J Clin Pharmacol. 1979;16(3):203–9. doi:10.1007/BF00562062.

    Article  PubMed  CAS  Google Scholar 

  22. Flewellen EH, Nelson TE, Jones WP, Arens JF, Wagner DL. Dantrolene dose response in awake man: implications for management of malignant hyperthermia. Anesthesiology. 1983;59(4):275–80. doi:10.1097/00000542-198310000-00002.

    Article  PubMed  CAS  Google Scholar 

  23. Ellis KO, Wessels FL. Muscle relaxant properties of the identified metabolites of dantrolene. Naunyn Schmiedebergs Arch Pharmacol. 1978;301(3):237–40. doi:10.1007/BF00507042.

    Article  PubMed  CAS  Google Scholar 

  24. Faling LJ, Petusevsky ML, Snider GL. Nitrofurantoin and dantrolene; liver and lung. Ann Intern Med. 1980;93(1):151.

    PubMed  CAS  Google Scholar 

  25. Chan CH. Dantrolene sodium and hepatic injury. Neurology. 1990;40(9):1427–32.

    PubMed  CAS  Google Scholar 

  26. Durham JA, Gandolfi AJ, Bentley JB. Hepatotoxicological evaluation of dantrolene sodium. Drug Chem Toxicol. 1984;7(1):23–40. doi:10.3109/01480548409014171.

    Article  PubMed  CAS  Google Scholar 

  27. Yamagishi F, Komoda T, Ohnishi K, Itoh S. Protective effect of dantrolene sodium on carbon tetrachloride induced liver injury in the rat. Res Commun Chem Pathol Pharmacol. 1993;82(2):237–40.

    PubMed  CAS  Google Scholar 

  28. Sorensen EM, Acosta D. Comparison of dantrolene sodium with erythromycin estolate using primary cultures of rat hepatocytes. Drug Chem Toxicol. 1985;8(4):219–37. doi:10.3109/01480548509038647.

    Article  PubMed  CAS  Google Scholar 

  29. Petusevsky ML, Faling LJ, Rocklin RE, et al. Pleuropericardial reaction to treatment with dantrolene. JAMA. 1979;242(25):2772–4. doi:10.1001/jama.242.25.2772.

    Article  PubMed  CAS  Google Scholar 

  30. Mahoney JM, Bachtel MD. Pleural effusion associated with chronic dantrolene administration. Ann Pharmacother. 1994;28(5):587–9.

    PubMed  CAS  Google Scholar 

  31. Felz MW, Haviland-Foley DJ. Eosinophilic pleural effusion due to dantrolene: resolution with steroid therapy. South Med J. 2001;94(5):502–4.

    PubMed  CAS  Google Scholar 

  32. Saltzman LS, Kates RA, Corke BC, Norfleet EA, Heath KR. Hyperkalemia and cardiovascular collapse after verapamil and dantrolene administration in swine. Anesth Analg. 1984;63(5):473–8. doi:10.1213/00000539-198405000-00001.

    Article  PubMed  CAS  Google Scholar 

  33. Freysz M, Timour Q, Bernaud C, Bertrix L, Faucon G. Cardiac implications of amlodipine-dantrolene combinations. Can J Anaesth. 1996;43(1):50–5.

    PubMed  CAS  Google Scholar 

  34. Benveniste H, Drejer J, Schousboe A, Diemer NH. Elevation of the extracellular concentrations of glutamate and aspartate in rat hippocampus during transient cerebral ischemia monitored by intracerebral microdialysis. J Neurochem. 1984;43(5):1369–74. doi:10.1111/j.1471-4159.1984.tb05396.x.

    Article  PubMed  CAS  Google Scholar 

  35. Small DL, Buchan AM. Mechanisms of cerebral ischemia: intracellular cascades and therapeutic interventions. J Cardiothorac Vasc Anesth. 1996;10(1):139–46. doi:10.1016/S1053-0770(96)80189-3.

    Article  PubMed  CAS  Google Scholar 

  36. Kristian T, Siesjo BK. Calcium in ischemic cell death. Stroke. 1998;29(3):705–18.

    PubMed  CAS  Google Scholar 

  37. Somlyo AP, Bond M, Somlyo AV. Calcium content of mitochondria and endoplasmic reticulum in liver frozen rapidly in vivo. Nature. 1985;314(6012):622–5. doi:10.1038/314622a0.

    Article  PubMed  CAS  Google Scholar 

  38. Carafoli E. Intracellular calcium homeostasis. Annu Rev Biochem. 1987;56:395–433. doi:10.1146/annurev.bi.56.070187.002143.

    Article  PubMed  CAS  Google Scholar 

  39. Kohno K, Higuchi T, Ohta S, Kohno K, Kumon Y, Sakaki S. Neuroprotective nitric oxide synthase inhibitor reduces intracellular calcium accumulation following transient global ischemia in the gerbil. Neurosci Lett. 1997;224(1):17–20. doi:10.1016/S0304-3940(97)13459-0.

    Article  PubMed  CAS  Google Scholar 

  40. Orrenius S, Zhivotovsky B, Nicotera P. Regulation of cell death: the calcium-apoptosis link. Nat Rev. 2003;4(7):552–65.

    Article  CAS  Google Scholar 

  41. Kaufman RJ. Stress signaling from the lumen of the endoplasmic reticulum: coordination of gene transcriptional and translational controls. Genes Dev. 1999;13(10):1211–33. doi:10.1101/gad.13.10.1211.

    Article  PubMed  CAS  Google Scholar 

  42. Welihinda AA, Tirasophon W, Kaufman RJ. The cellular response to protein misfolding in the endoplasmic reticulum. Gene Expr. 1999;7(4–6):293–300.

    PubMed  CAS  Google Scholar 

  43. Syntichaki P, Tavernarakis N. The biochemistry of neuronal necrosis: rogue biology? Nat Rev. 2003;4(8):672–84.

    Article  CAS  Google Scholar 

  44. Duzenli S, Bakuridze K, Gepdiremen A. The effects of ruthenium red, dantrolene and nimodipine, alone or in combination, in NMDA induced neurotoxicity of cerebellar granular cell culture of rats. Toxicol In Vitro. 2005;19(5):589–94. doi:10.1016/j.tiv.2005.03.007.

    Article  PubMed  CAS  Google Scholar 

  45. Bouchelouche P, Belhage B, Frandsen A, Drejer J, Schousboe A. Glutamate receptor activation in cultured cerebellar granule cells increases cytosolic free Ca2+ by mobilization of cellular Ca2+ and activation of Ca2+ influx. Exp Brain Res. 1989;76(2):281–91.

    Article  PubMed  CAS  Google Scholar 

  46. Simpson PB, Challiss RA, Nahorski SR. Involvement of intracellular stores in the Ca2+ responses to N-Methyl-D-aspartate and depolarization in cerebellar granule cells. J Neurochem. 1993;61(2):760–3.

    PubMed  CAS  Google Scholar 

  47. Massote PD, Pinheiro AC, Fonseca CG, et al. Protective effect of retinal ischemia by blockers of voltage-dependent calcium channels and intracellular calcium stores. Cell Mol Neurobiol. 2008.

  48. Frandsen A, Schousboe A. Mobilization of dantrolene-sensitive intracellular calcium pools is involved in the cytotoxicity induced by quisqualate and N-methyl-D-aspartate but not by 2-amino-3-(3-hydroxy-5-methylisoxazol-4-yl)propionate and kainate in cultured cerebral cortical neurons. Proc Natl Acad Sci USA. 1992;89(7):2590–4. doi:10.1073/pnas.89.7.2590.

    Article  PubMed  CAS  Google Scholar 

  49. Lei SZ, Zhang D, Abele AE, Lipton SA. Blockade of NMDA receptor-mediated mobilization of intracellular Ca2+ prevents neurotoxicity. Brain Res. 1992;598(1–2):196–202. doi:10.1016/0006-8993(92)90183-A.

    Article  PubMed  CAS  Google Scholar 

  50. Segal M, Manor D. Confocal microscopic imaging of [Ca2+]i in cultured rat hippocampal neurons following exposure to N-methyl-D-aspartate. J Physiol. 1992;448:655–76.

    PubMed  CAS  Google Scholar 

  51. Nakayama R, Yano T, Ushijima K, Abe E, Terasaki H. Effects of dantrolene on extracellular glutamate concentration and neuronal death in the rat hippocampal CA1 region subjected to transient ischemia. Anesthesiology. 2002;96(3):705–10. doi:10.1097/00000542-200203000-00029.

    Article  PubMed  CAS  Google Scholar 

  52. Eliasson MJ, Sampei K, Mandir AS, et al. Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med. 1997;3(10):1089–95. doi:10.1038/nm1097-1089.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang J, Dawson VL, Dawson TM, Snyder SH. Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science. 1994;263(5147):687–9. doi:10.1126/science.8080500.

    Article  PubMed  CAS  Google Scholar 

  54. Tasker RC, Sahota SK, Cotter FE, Williams SR. Early postischemic dantrolene-induced amelioration of poly(ADP-ribose) polymerase-related bioenergetic failure in neonatal rat brain slices. J Cereb Blood Flow Metab. 1998;18(12):1346–56. doi:10.1097/00004647-199812000-00009.

    Article  PubMed  CAS  Google Scholar 

  55. Moubarak RS, Yuste VJ, Artus C, et al. Sequential activation of poly(ADP-Ribose) polymerase 1, calpains, and Bax is essential in apoptosis-inducing factor-mediated programmed necrosis. Mol Cell Biol. 2007;27(13):4844–62. doi:10.1128/MCB.02141-06.

    Article  PubMed  CAS  Google Scholar 

  56. Nath R, Raser KJ, Hajimohammadreza I, Wang KK. Thapsigargin induces apoptosis in SH-SY5Y neuroblastoma cells and cerebrocortical cultures. Biochem Mol Biol Int. 1997;43(1):197–205.

    PubMed  CAS  Google Scholar 

  57. Guo Q, Sopher BL, Furukawa K, et al. Alzheimer’s presenilin mutation sensitizes neural cells to apoptosis induced by trophic factor withdrawal and amyloid beta-peptide: involvement of calcium and oxyradicals. J Neurosci. 1997;17(11):4212–22.

    PubMed  CAS  Google Scholar 

  58. Wei H, Leeds P, Chen RW, et al. Neuronal apoptosis induced by pharmacological concentrations of 3-hydroxykynurenine: characterization and protection by dantrolene and Bcl-2 overexpression. J Neurochem. 2000;75(1):81–90. doi:10.1046/j.1471-4159.2000.0750081.x.

    Article  PubMed  CAS  Google Scholar 

  59. Kim BC, Kim HT, Mamura M, Ambudkar IS, Choi KS, Kim SJ. Tumor necrosis factor induces apoptosis in hepatoma cells by increasing Ca(2+) release from the endoplasmic reticulum and suppressing Bcl-2 expression. J Biol Chem. 2002;277(35):31381–9. doi:10.1074/jbc.M203465200.

    Article  PubMed  CAS  Google Scholar 

  60. Popescu BO, Oprica M, Sajin M, et al. Dantrolene protects neurons against kainic acid induced apoptosis in vitro and in vivo. J Cell Mol Med. 2002;6(4):555–69. doi:10.1111/j.1582-4934.2002.tb00454.x.

    Article  PubMed  CAS  Google Scholar 

  61. Gwak M, Park P, Kim K, et al. The effects of dantrolene on hypoxic-ischemic injury in the neonatal rat brain. Anesth Analg. 2008;106(1):227–33. Table of contents.

    PubMed  CAS  Google Scholar 

  62. Gupta S. Molecular signaling in death receptor and mitochondrial pathways of apoptosis. Int J Oncol. 2003;22(1):15–20. Review.

    PubMed  CAS  Google Scholar 

  63. Bucholz J, Tsai H, Duckles SP. Intracellular calcium release induced by caffeine is buffered by mitochondria in superior cervical ganglion cells. FASEB J. 1996;10:A 142.

    Google Scholar 

  64. Hermes-Lima M. How do Ca2+ and 5-aminolevulinic acid-derived oxyradicals promote injury to isolated mitochondria? Free Radic Biol Med. 1995;19(3):381–90. doi:10.1016/0891-5849(95)00015-P.

    Article  PubMed  CAS  Google Scholar 

  65. Saunders R, Szymczyk KH, Shapiro IM, Adams CS. Matrix regulation of skeletal cell apoptosis III: mechanism of ion pair-induced apoptosis. J Cell Biochem. 2007;100(3):703–15.

    Article  PubMed  CAS  Google Scholar 

  66. Hayashi T, Kagaya A, Motohashi N, Yamawaki S. Possible mechanism of dantrolene stabilization of cultured neuroblastoma cell plasma membranes. J Neurochem. 1994;63(5):1849–54.

    Article  PubMed  CAS  Google Scholar 

  67. Bronner C, Wiggins C, Monte D, et al. Compound 48/80 is a potent inhibitor of phospholipase C and a dual modulator of phospholipase A2 from human platelet. Biochim Biophys Acta. 1987;920(3):301–5.

    PubMed  CAS  Google Scholar 

  68. Li F, Hayashi T, Jin G, et al. The protective effect of dantrolene on ischemic neuronal cell death is associated with reduced expression of endoplasmic reticulum stress markers. Brain Res. 2005;1048(1–2):59–68. doi:10.1016/j.brainres.2005.04.058.

    Article  PubMed  CAS  Google Scholar 

  69. Xu K, Tavernarakis N, Driscoll M. Necrotic cell death in C. elegans requires the function of calreticulin and regulators of Ca(2+) release from the endoplasmic reticulum. Neuron. 2001;31(6):957–71. doi:10.1016/S0896-6273(01)00432-9.

    Google Scholar 

  70. Guo Q, Fu W, Sopher BL, et al. Increased vulnerability of hippocampal neurons to excitotoxic necrosis in presenilin-1 mutant knock-in mice. Nat Med. 1999;5(1):101–6. doi:10.1038/4789.

    Article  PubMed  CAS  Google Scholar 

  71. Mattson MP, Zhu H, Yu J, Kindy MS. Presenilin-1 mutation increases neuronal vulnerability to focal ischemia in vivo and to hypoxia and glucose deprivation in cell culture: involvement of perturbed calcium homeostasis. J Neurosci. 2000;20(4):1358–64.

    PubMed  CAS  Google Scholar 

  72. Zucchi R, Yu G, Ghelardoni S, Ronca F, Ronca-Testoni S. A3 adenosine receptor stimulation modulates sarcoplasmic reticulum Ca(2+) release in rat heart. Cardiovasc Res. 2001;50(1):56–64. doi:10.1016/S0008-6363(00)00318-7.

    Article  PubMed  CAS  Google Scholar 

  73. Yu G, Zucchi R, Ronca-Testoni S, Ronca G. Protection of ischemic rat heart by dantrolene, an antagonist of the sarcoplasmic reticulum calcium release channel. Basic Res Cardiol. 2000;95(2):137–43. doi:10.1007/s003950050175.

    Article  PubMed  CAS  Google Scholar 

  74. Lopez-Neblina F, Toledo-Pereyra LH, Toledo AH, Walsh J. Ryanodine receptor antagonism protects the ischemic liver and modulates TNF-alpha and IL-10. J Surg Res. 2007;140(1):121–8. doi:10.1016/j.jss.2006.12.003.

    Article  PubMed  CAS  Google Scholar 

  75. Husain SZ, Prasad P, Grant WM, Kolodecik TR, Nathanson MH, Gorelick FS. The ryanodine receptor mediates early zymogen activation in pancreatitis. Proc Natl Acad Sci USA. 2005;102(40):14386–91. doi:10.1073/pnas.0503215102.

    Article  PubMed  CAS  Google Scholar 

  76. Kross J, Fleischer JE, Milde JH, Gronert GA. No dantrolene protection in a dog model of complete cerebral ischaemia. Neurol Res. 1993;15(1):37–40.

    PubMed  CAS  Google Scholar 

  77. Martinez-Sanchez M, Striggow F, Schroder UH, Kahlert S, Reymann KG, Reiser G. Na(+) and Ca(2+) homeostasis pathways, cell death and protection after oxygen-glucose-deprivation in organotypic hippocampal slice cultures. Neuroscience. 2004;128(4):729–40. doi:10.1016/j.neuroscience.2004.06.074.

    Article  PubMed  CAS  Google Scholar 

  78. Kim JH, Kim SH, Min KTM, Kim MH, Song SK, Lee BH. Comparison of the cerebral protective effects of thiopental, propofol and dantrolene on focal cerebral ischemia induced by temporary middle cerebral artery occlusion in the rat under the monitoring of compressed spectral array. J Korean Neurosurg Soc. 2002;32:239–45.

    Google Scholar 

  79. Mitani A, Yanase H, Sakai K, Wake Y, Kataoka K. Origin of intracellular Ca2+ elevation induced by in vitro ischemia-like condition in hippocampal slices. Brain Res. 1993;601(1–2):103–10. doi:10.1016/0006-8993(93)91700-3.

    Article  PubMed  CAS  Google Scholar 

  80. Wang C, Nguyen HN, Maguire JL, Perry DC. Role of intracellular calcium stores in cell death from oxygen-glucose deprivation in a neuronal cell line. J Cereb Blood Flow Metab. 2002;22(2):206–14. doi:10.1097/00004647-200202000-00008.

    Article  PubMed  CAS  Google Scholar 

  81. Zhang L, Andou Y, Masuda S, Mitani A, Kataoka K. Dantrolene protects against ischemic, delayed neuronal death in gerbil brain. Neurosci Lett. 1993;158(1):105–8. doi:10.1016/0304-3940(93)90623-S.

    Article  PubMed  CAS  Google Scholar 

  82. Niebauer M, Gruenthal M. Neuroprotective effects of early vs. late administration of dantrolene in experimental status epilepticus. Neuropharmacology. 1999;38(9):1343–8. doi:10.1016/S0028-3908(99)00059-3.

    Article  PubMed  CAS  Google Scholar 

  83. GepdIremen A, Duzenl IS, Hacimuftuoglu A, Suleyman H, Oztas S. The effects of dantrolene alone or in combination with nimodipine in glutamate-induced neurotoxicity in cerebellar granular cell cultures of rat pups. Pharmacol Res. 2001;43(3):241–4. doi:10.1006/phrs.2000.0770.

    Article  PubMed  CAS  Google Scholar 

  84. Tizzano JP, Griffey KI, Johnson JA, Fix AS, Helton DR, Schoepp DD. Intracerebral 1S, 3R–1-aminocyclopentane-1, 3-dicarboxylic acid (1S, 3R-ACPD) produces limbic seizures that are not blocked by ionotropic glutamate receptor antagonists. Neurosci Lett. 1993;162(1–2):12–6. doi:10.1016/0304-3940(93)90548-Y.

    Article  PubMed  CAS  Google Scholar 

  85. Borowicz KK, Gasior M, Kleinrok Z, Czuczwar SJ. Influence of isradipine, niguldipine and dantrolene on the anticonvulsive action of conventional antiepileptics in mice. Eur J Pharmacol. 1997;323(1):45–51. doi:10.1016/S0014-2999(97)00020-4.

    Article  PubMed  CAS  Google Scholar 

  86. Wuis EW, Rijntjes NV, van der Kleijn E. Whole-body autoradiography of 14C-dantrolene in the marmoset monkey. Pharmacol Toxicol. 1989;64(1):156–8.

    Article  PubMed  CAS  Google Scholar 

  87. Enokizono J, Kusuhara H, Ose A, Schinkel AH, Sugiyama Y. Quantitative investigation of the role of breast cancer resistance protein (Bcrp/Abcg2) in limiting brain and testis penetration of xenobiotic compounds. Drug Metab Dispos. 2008;36(6):995–1002. doi:10.1124/dmd.107.019257.

    Article  PubMed  CAS  Google Scholar 

  88. Bostrom E, Hammarlund-Udenaes M, Simonsson US. Blood-brain barrier transport helps to explain discrepancies in in vivo potency between oxycodone and morphine. Anesthesiology. 2008;108(3):495–505.

    PubMed  Google Scholar 

  89. Meyler WJ, Bakker H, Kok JJ, Agoston S, Wesseling H. The effect of dantrolene sodium in relation to blood levels in spastic patients after prolonged administration. J Neurol Neurosurg Psychiatry. 1981;44(4):334–9.

    Article  PubMed  CAS  Google Scholar 

  90. Nisijima K, Ishiguro T. Does dantrolene influence central dopamine and serotonin metabolism in the neuroleptic malignant syndrome? A retrospective study. Biol Psychiatry. 1993;33(1):45–8. doi:10.1016/0006-3223(93)90277-K.

    Article  PubMed  CAS  Google Scholar 

  91. Shuaib A, Lees KR, Lyden P, et al. NXY-059 for the treatment of acute ischemic stroke. N Engl J Med. 2007;357(6):562–71. doi:10.1056/NEJMoa070240.

    Article  PubMed  CAS  Google Scholar 

  92. Rosamond W, Flegal K, Furie K, et al. Heart disease and stroke statistics-2008 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 2008;117(4):e25–146. doi:10.1161/CIRCULATIONAHA.107.187998.

    Article  PubMed  Google Scholar 

  93. Nakayama K, Suzuki S, Sugi H. Physiological and ultrastructural studies on the mechanism of stretch-induced contractile activation in rabbit cerebral artery smooth muscle. Jpn J Physiol. 1986;36(4):745–60. doi:10.2170/jjphysiol.36.745.

    Article  PubMed  CAS  Google Scholar 

  94. Sims JR, Salomone S. Dantrolene inhibits serotonin and endothelin-1 vasoconstriction in the rat basilar artery. Neurocritical care. 2007;6(3):267 A107.

    Google Scholar 

  95. Call GK, Fleming MC, Sealfon S, Levine H, Kistler JP, Fisher CM. Reversible cerebral segmental vasoconstriction. Stroke. 1988;19(9):1159–70.

    PubMed  CAS  Google Scholar 

  96. Calabrese LH, Dodick DW, Schwedt TJ, Singhal AB. Narrative review: reversible cerebral vasoconstriction syndromes. Ann Intern Med. 2007;146(1):34–44.

    PubMed  Google Scholar 

  97. Dietrich WD. The importance of brain temperature in cerebral injury. J Neurotrauma. 1992;9(Suppl 2):S475–85.

    PubMed  Google Scholar 

  98. Azzimondi G, Bassein L, Nonino F, et al. Fever in acute stroke worsens prognosis. A prospective study. Stroke. 1995;26(11):2040–3.

    PubMed  CAS  Google Scholar 

  99. Reith J, Jorgensen HS, Pedersen PM, et al. Body temperature in acute stroke: relation to stroke severity, infarct size, mortality, and outcome. Lancet. 1996;347(8999):422–5. doi:10.1016/S0140-6736(96)90008-2.

    Article  PubMed  CAS  Google Scholar 

  100. Ginsberg MD, Busto R. Combating hyperthermia in acute stroke: a significant clinical concern. Stroke. 1998;29(2):529–34.

    PubMed  CAS  Google Scholar 

  101. Fernandez A, Schmidt JM, Claassen J, et al. Fever after subarachnoid hemorrhage. Risk factors and impact on outcome. Neurology. 2007;68:1013–1019.

    Article  PubMed  CAS  Google Scholar 

  102. Wartenberg KE, Schmidt JM, Claassen J, et al. Impact of medical complications on outcome after subarachnoid hemorrhage. Crit Care Med. 2006;34(3):617–23. Quiz 24.

    PubMed  Google Scholar 

  103. Lopez M, Sessler DI, Walter K, Emerick T, Ozaki M. Rate and gender dependence of the sweating, vasoconstriction, and shivering thresholds in humans. Anesthesiology. 1994;80(4):780–8. doi:10.1097/00000542-199404000-00009.

    Article  PubMed  CAS  Google Scholar 

  104. Ralley FE, Wynands JE, Ramsay JG, Carli F, MacSullivan R. The effects of shivering on oxygen consumption and carbon dioxide production in patients rewarming from hypothermic cardiopulmonary bypass. Can J Anaesth. 1988;35(4):332–7.

    PubMed  CAS  Google Scholar 

  105. Horvath SM, Spurr GB, Hutt BK, Hamilton LH. Metabolic cost of shivering. J Appl Physiol. 1956;8(6):595–602.

    PubMed  CAS  Google Scholar 

  106. Modica PA, Tempelhoff R, White PF. Pro- and anticonvulsant effects of anesthetics (Part II). Anesth Analg. 1990;70(4):433–44. doi:10.1213/00000539-199004000-00016.

    Article  PubMed  CAS  Google Scholar 

  107. Buggy D, Higgins P, Moran C, O’Donovan F, McCarroll M. Clonidine at induction reduces shivering after general anaesthesia. Can J Anaesth. 1997;44(3):263–7.

    PubMed  CAS  Google Scholar 

  108. Bicer C, Esmaoglu A, Akin A, Boyaci A. Dexmedetomidine and meperidine prevent postanaesthetic shivering. Eur J Anaesthesiol. 2006;23(2):149–53. doi:10.1017/S0265021505002061.

    Article  PubMed  CAS  Google Scholar 

  109. Nath A, Padua RA, Geiger JD. HIV-1 coat protein gp120-induced increases in levels of intrasynaptosomal calcium. Brain Res. 1995;678(1–2):200–6. doi:10.1016/0006-8993(95)00185-S.

    Article  PubMed  CAS  Google Scholar 

  110. Berg M, Bruhn T, Frandsen A, Schousboe A, Diemer NH. Kainic acid-induced seizures and brain damage in the rat: role of calcium homeostasis. J Neurosci Res. 1995;40(5):641–6. doi:10.1002/jnr.490400509.

    Article  PubMed  CAS  Google Scholar 

  111. Nagatomo I, Hashiguchi W, Tominaga M, Akasaki Y, Uchida M, Takigawa M. Effects of MK-801, dantrolene, and FK506 on convulsive seizures and brain nitric oxide production in seizure-susceptible EL mice. Brain Res. 2001;888(2):306–10. doi:10.1016/S0006-8993(00)03101-2.

    Article  PubMed  CAS  Google Scholar 

  112. Pisani A, Calabresi P, Tozzi A, D’Angelo V, Bernardi G. L-type Ca2+ channel blockers attenuate electrical changes and Ca2+ rise induced by oxygen/glucose deprivation in cortical neurons. Stroke. 1998;29(1):196–201. Discussion 2.

    PubMed  CAS  Google Scholar 

  113. Phillis JW, Diaz FG, O’Regan MH, Pilitsis JG. Effects of immunosuppressants, calcineurin inhibition, and blockade of endoplasmic reticulum calcium channels on free fatty acid efflux from the ischemic/reperfused rat cerebral cortex. Brain Res. 2002;957(1):12–24. doi:10.1016/S0006-8993(02)03578-3.

    Article  PubMed  CAS  Google Scholar 

  114. Yano T, Nakayama R, Imaizumi T, Terasaki H, Ushijima K. Dantrolene ameliorates delayed cell death and concomitant DNA fragmentation in the rat hippocampal CA1 neurons subjected to mild ischemia. Resuscitation. 2001;50(1):117–25. doi:10.1016/S0300-9572(00)00369-5.

    Article  PubMed  CAS  Google Scholar 

  115. Yoon KW, Mitchell HL, Broder LD, Brooker RW, Delisle RK. Trauma-induced neurotoxicity in rat hippocampal neurons. Stroke. 1996;27(1):122–6.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgment

Dr. John R. Sims is supported by NIH 1 K08 NS049241-01A2. We would like to thank Susanne L. Loomis for help in preparing Fig. 1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. Sims.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Muehlschlegel, S., Sims, J.R. Dantrolene: Mechanisms of Neuroprotection and Possible Clinical Applications in the Neurointensive Care Unit. Neurocrit Care 10, 103–115 (2009). https://doi.org/10.1007/s12028-008-9133-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12028-008-9133-4

Keywords

Navigation