Skip to main content

Advertisement

Log in

Glaucoma: recent advances in the involvement of autoimmunity

  • Therapeutic Aspects in Autoimmunity
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Glaucomatous optic neuropathy is the most commonly acquired optic neuropathy encountered in clinical practice. It is the second leading cause of blindness globally, after cataracts, but it presents a greater public health challenge than cataracts, because the blindness it causes is irreversible. It has pathogenesis still largely unknown and no established cure. Alterations in serum antibody profiles, upregulation, and downregulation have been described, but it still remains elusive if the autoantibodies seen in glaucoma are an epiphenomenon or causative. Hypertension, diabetes, and hearing disorders also are associated. This review is a glaucoma update with focus about the recent advances in the last 15 years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kingman S. Glaucoma is second leading cause of blindness globally. Bull World Health Organ. 2004;82:887–8.

    PubMed  PubMed Central  Google Scholar 

  2. Wax MB, Tezel G, Saito I, et al. Anti-Ro/SS-a positivity and heat shock protein antibodies in patients with normal-pressure glaucoma. Am J Ophthalmol. 1998;125:145–57.

    Article  CAS  PubMed  Google Scholar 

  3. Grus FH, Gramlich OW. Autoimmunity and glaucoma. Klin Monbl Augenheilkd. 2011;228:439–45.

    Article  CAS  PubMed  Google Scholar 

  4. Rieck J. The pathogenesis of glaucoma in the interplay with the immune system. Invest Ophthalmol Vis Sci. 2013;54:2393–409.

    Article  PubMed  Google Scholar 

  5. Kremmer S, Kreuzfelder E, Bachor E, Jahnke K, Selbach JM, Seidahmadi S. Coincidence of normal tension glaucoma, progressive sensorineural hearing loss, and elevated antiphosphatidylserine antibodies. Br J Ophthalmol. 2004;88:1259–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kremmer S, Anastassiou G, Selbach JM. Hearing disorders with glaucoma. Klin Monbl Augenheilkd. 2014;231:144–50.

    Article  CAS  PubMed  Google Scholar 

  7. Quigley HA. Glaucoma. Lancet. 2011;377:1367–77.

    Article  PubMed  Google Scholar 

  8. Tham YC, Li X, Wong TY, Quigley HA, Aung T, Cheng CY. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121:2081–90.

    Article  PubMed  Google Scholar 

  9. Javitt JC, McBean AM, Nicholson GA, Babish JD, Warren JL, Krakauer H. Undertreatment of glaucoma among black Americans. N Engl J Med. 1991;325:1418–22.

    Article  CAS  PubMed  Google Scholar 

  10. Resnikoff S, Pascolini D, Etya’ale D, Kocur I, Pararajasegaram R, Pokharel GP, Mariotti SP. Global data on visual impairment in the year 2002. Bull World Health Organ. 2004;82:844–51.

    PubMed  PubMed Central  Google Scholar 

  11. Pascolini D, Mariotti SP. Global estimates of visual impairment: 2010. Br J Ophthalmol. 2012;96:614–8.

    Article  PubMed  Google Scholar 

  12. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90:262–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kass MA, Heuer DK, Higginbotham EJ, et al. The Ocular Hypertension Treatment Study: a randomized trial determines that topical ocular hypotensive medication delays or prevents the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:701–13.

    Article  PubMed  Google Scholar 

  14. Gordon MO, Beiser JA, Brandt JD, et al. The Ocular Hypertension Treatment Study: baseline factors that predict the onset of primary open-angle glaucoma. Arch Ophthalmol. 2002;120:714–20.

    Article  PubMed  Google Scholar 

  15. Aung T, Ocaka L, Ebenezer ND, et al. A major marker for normal tension glaucoma: association with polymorphisms in the OPA1 gene. Hum Genet. 2002;110:52–6.

    Article  CAS  PubMed  Google Scholar 

  16. Bonomi L, Marchini G, Marraffa M, et al. Prevalence of glaucoma and intraocular pressure distribution in a defined population: the Egna-Neumarkt study. Ophthalmology. 1998;105:209–15.

    Article  CAS  PubMed  Google Scholar 

  17. Grus FH, Joachim SC, Pfeiffer N. Analysis of complex autoantibody repertoires by surface-enhanced laser desorption/ionization-time of flight mass spectrometry. Proteomics. 2003;3:957–61.

    Article  CAS  PubMed  Google Scholar 

  18. Burgoyne CF. A biomechanical paradigm for axonal insult within the optic nerve head in aging and glaucoma. Exp Eye Res. 2010;93:120–32.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ferrer E. Trabecular meshwork as a new target for the treatment of glaucoma. Drug News Perspect. 2006;19:151–8.

    Article  CAS  PubMed  Google Scholar 

  20. Henderson PA, Medeiros FA, Zangwill LM, Weinreb RN. Relationship between central corneal thickness and retinal nerve fiber layer thickness in ocular hypertensive patients. Ophthalmology. 2005;112:251–6.

    Article  PubMed  Google Scholar 

  21. Maruyama I, Ikeda Y, Nakazawa M, Ohguro H. Clinical roles of serum autoantibody against neuron-specific enolase in glaucoma patients. Tohoku J Exp Med. 2002;197:125–32.

    Article  PubMed  Google Scholar 

  22. Maruyama I, Ohguro H, Ikeda Y. Retinal ganglion cells recognized by serum autoantibody against gamma-enolase found in glaucoma patients. Invest Ophthalmol Vis Sci. 2000;41:1657–65.

    CAS  PubMed  Google Scholar 

  23. Nickells RW, Howell GR, Soto I, John SW. Under pressure: cellular and molecular responses during glaucoma, a common neurodegeneration with axonopathy. Annu Rev Neurosci. 2012;35:153–79.

    Article  CAS  PubMed  Google Scholar 

  24. Weinreb RN, Khaw PT. Primary open-angle glaucoma. Lancet. 2004;363:1711–20.

    Article  PubMed  Google Scholar 

  25. Whitmore AV, Libby RT, John SWM. Glaucoma: thinking in new ways—a rôle for autonomous axonal self-destruction and other compartmentalised processes? Prog Retin Eye Res. 2005;24:639–62.

    Article  PubMed  Google Scholar 

  26. Harrington DO. The Bjerrum scotoma. Trans Am Ophthalmol Soc. 1964;62:324–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Bjerrum J. Om en tilføjelse til den sædvanlige synsfelt – undersögelse samt om synsfeltet ved glaukom. Nord ophthal Tidsskrift. 1889;2:141–85.

    Google Scholar 

  28. Nickells RW. Retinal ganglion cell death in glaucoma: the how, the why, and the maybe. J Glaucoma. 1996;5:345–56.

    Article  CAS  PubMed  Google Scholar 

  29. Zur D, Ullman S. Filling-in of retinal scotomas. Vis Res. 2003;43:971–82.

    Article  PubMed  Google Scholar 

  30. Pease ME, McKinnon SJ, Quigley HA, Kerrigan-Baumrind LA, Zack DJ. Obstructed axonal transport of BDNF and its receptor TrkB in experimental glaucoma. Invest Ophthalmol Vis Sci. 2000;41:764–74.

    CAS  PubMed  Google Scholar 

  31. Agar A, Li S, Agarwal N, Coroneo MT, Hill MA. Retinal ganglion cell line apoptosis induced by hydrostatic pressure. Brain Res. 2006;1086:191–200.

    Article  CAS  PubMed  Google Scholar 

  32. Agar A, Yip SS, Hill MA, Coroneo MT. Pressure related apoptosis in neuronal cell lines. J Neurosci Res. 2000;60:495–503.

    Article  CAS  PubMed  Google Scholar 

  33. Pfeiffer N. Results of the “Ocular Hypertension treatment study”. Ophthalmologe. 2005;102:230–4.

    Article  CAS  PubMed  Google Scholar 

  34. Nickells RW. The molecular biology of retinal ganglion cell death: caveats and controversies. Brain Res Bull. 2004;62:439–46.

    Article  CAS  PubMed  Google Scholar 

  35. Li Y, Schlamp CL, Poulsen KP, Nickells RW. Bax-dependent and independent pathways of retinal ganglion cell death induced by different damaging stimuli. Exp Eye Res. 2000;71:209–13.

    Article  CAS  PubMed  Google Scholar 

  36. Li Y, Schlamp CL, Poulsen GL, Jackson MW, Griep AE, Nickells RW. p53 regulates apoptotic retinal ganglion cell death induced by N-methyl-d-aspartate. Mol Vis. 2002;8:341–50.

    CAS  PubMed  Google Scholar 

  37. Wax MB, Tezel G, Yang J, et al. Induced autoimmunity to heat shock proteins elicits glaucomatous loss of retinal ganglion cell neurons via activated T-cell-derived Fas-ligand. J Neurosci. 2008;28:12085–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nickells RW. From ocular hypertension to ganglion cell death: a theoretical sequence of events leading to glaucoma. Can J Ophthalmol. 2007;42:278–87.

    Article  PubMed  Google Scholar 

  39. Chidlow G, Wood JP, Casson RJ. Pharmacological neuroprotection for glaucoma. Drugs. 2007;67:725–59.

    Article  CAS  PubMed  Google Scholar 

  40. Kuehn MH, Fingert JH, Kwon YH. Retinal ganglion cell death in glaucoma: mechanisms and neuroprotective strategies. Ophthalmol Clin North Am. 2005;18:383–95.

    Article  PubMed  Google Scholar 

  41. Lipton SA. Possible role for memantine in protecting retinal ganglion cells from glaucomatous damage. Surv Ophthalmol. 2003;48:S38–46.

    Article  PubMed  Google Scholar 

  42. Schori H, Kipnis J, Yoles E, et al. Vaccination for protection of retinal ganglion cells against death from glutamate cytotoxicity and ocular hypertension: implications for glaucoma. Proc Natl Acad Sci USA. 2001;98:3398–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vorwerk CK, Naskar R, Schuettauf F, et al. Depression of retinal glutamate transporter function leads to elevated intravitreal glutamate levels and ganglion cell death. Invest Ophthalmol Vis Sci. 2000;41:3615–21.

    CAS  PubMed  Google Scholar 

  44. Honkanen RA, Baruah S, Zimmerman MB, et al. Vitreous amino acid concentrations in patients with glaucoma undergoing vitrectomy. Arch Ophthalmol. 2003;121:183–8.

    Article  CAS  PubMed  Google Scholar 

  45. Ullian EM, Barkis WB, Chen S, Diamond JS, Barres BA. Invulnerability of retinal ganglion cells to NMDA excitotoxicity. Mol Cell Neurosci. 2004;26:544–57.

    Article  CAS  PubMed  Google Scholar 

  46. Russo R, Rotiroti D, Tassorelli C, et al. Identification of novel pharmacological targets to minimize excitotoxic retinal damage. Int Rev Neurobiol. 2009;85:407–23.

    Article  CAS  PubMed  Google Scholar 

  47. Inoue-Matsuhisa E, Sogo S, Mizota A, Taniai M, Takenaka H, Mano T. Effect of MCI-9042, a 5-HT2 receptor antagonist, on retinal ganglion cell death and retinal ischemia. Exp Eye Res. 2003;76:445–52.

    Article  CAS  PubMed  Google Scholar 

  48. Lingor P, Koeberle P, Kügler S, Bähr M. Down-regulation of apoptosis mediators by RNAi inhibits axotomy-induced retinal ganglion cell death in vivo. Brain. 2005;128:550–8.

    Article  PubMed  Google Scholar 

  49. Osborne NN, Lascaratos G, Bron AJ, Chidlow G, Wood JP. A hypothesis to suggest that light is a risk factor in glaucoma and the mitochondrial optic neuropathies. Br J Ophthalmol. 2006;90:237–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aronica E, Gorter JA, Ijlst-Keizers H, et al. Expression and functional role of mGluR3 and mGluR5 in human astrocytes and glioma cells: opposite regulation of glutamate transporter proteins. Eur J Neurosci. 2003;17:2106–18.

    Article  PubMed  Google Scholar 

  51. Naskar R, Vorwerk CK, Dreyer EB. Concurrent downregulation of a glutamate transporter and receptor in glaucoma. Invest Ophthalmol Vis Sci. 2000;41:1940–4.

    CAS  PubMed  Google Scholar 

  52. Sofroniew M, Vinters H. Astrocytes: biology and pathology. Acta Neuropathol. 2010;119:7–35.

    Article  PubMed  Google Scholar 

  53. Garrido C, Gurbuxani S, Ravagnan L, Kroemer G. Heat shock proteins: endogenous modulators of apoptotic cell death. Biochem Biophys Res Commun. 2001;286:433–42.

    Article  CAS  PubMed  Google Scholar 

  54. Wax MB, Yang J, Tezel G, Peng G, Patil RV, Calkins DJ. A model of experimental autoimmune glaucoma in rats elicited by immunization with heat shock protein27. Invest Ophthalmol Vis Sci 2002; 43 [E-abstract 2884].

  55. Tezel G, Hernandez MR, Wax MB. Immunostaining of heat shock proteins in the retina and optic nerve head of normal and glaucomatous eyes. Arch Ophthalmol. 2000;118:511–8.

    Article  CAS  PubMed  Google Scholar 

  56. Joachim SC, Pfeiffer N, Grus FH. Autoantibodies in patients with glaucoma: a comparison of IgG serum antibodies against retinal, optic nerve, and optic nerve head antigens. Graefes Arch Clin Exp Ophthalmol. 2005;243:817–23.

    Article  CAS  PubMed  Google Scholar 

  57. Grus FH, Joachim SC, Hoffmann EM, Pfeiffer N. Complex autoantibody repertoires in patients with glaucoma. Mol Vis. 2004;10:132–7.

    CAS  PubMed  Google Scholar 

  58. Grus FH, Joachim SC, Bruns K, Lackner KJ, Pfeiffer N, Wax MB. Serum autoantibodies to alpha-fodrin are present in glaucoma patients from Germany and the United States. Invest Ophthalmol Vis Sci. 2006;47:968–76.

    Article  PubMed  Google Scholar 

  59. Yang J, Tezel G, Patil RV, Romano C, Wax MB. Serum autoantibody against glutathione S-transferase in patients with glaucoma. Invest Ophthalmol Vis Sci. 2001;42:1273–6.

    CAS  PubMed  Google Scholar 

  60. Yano T, Yamada K, Kimura A, et al. Autoimmunity against neurofilament protein and its possible association with HLA-DRB1*1502 allele in glaucoma. Immunol Lett. 2005;100:164–9.

    Article  CAS  PubMed  Google Scholar 

  61. Grus FH, Joachim SC, Wuenschig D, Rieck J, Pfeiffer N. Autoimmunity and glaucoma. J Glaucoma. 2008;17:79–84.

    Article  PubMed  Google Scholar 

  62. Yan X, Tezel G, Wax MB, Edward DP. Matrix metalloproteinases and tumor necrosis factor alpha in glaucomatous optic nerve head. Arch Ophthalmol. 2000;118:666–73.

    Article  CAS  PubMed  Google Scholar 

  63. Tezel G. TNF-alpha signaling in glaucomatous neurodegeneration. Prog Brain Res. 2008;173:409–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Yuan L, Neufeld AH. Tumor necrosis factor-α: a potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia. 2000;32:42–50.

    Article  CAS  PubMed  Google Scholar 

  65. Luo C, Yang X, Powell DW, Klein JB, Tezel G. Stress proteins and immunostimulatory signaling through toll-like receptors in glaucoma. Invest Ophthalmol Vis Sci 2009; 50 [E-abstract 4048].

  66. Young DB. Heat-shock proteins: immunity and autoimmunity. Curr Opin Immunol. 1992;4:396–400.

    Article  CAS  PubMed  Google Scholar 

  67. Oldstone MB. Molecular mimicry, microbial infection, and autoimmune disease: evolution of the concept. Curr Top Microbiol Immunol. 2005;296:1–17.

    CAS  PubMed  Google Scholar 

  68. Galloway PH, Warner SJ, Morshed MG, Mikelberg FS. Helicobacter pylori infection and the risk for open-angle glaucoma. Ophthalmology. 2003;110:922–5.

    Article  PubMed  Google Scholar 

  69. Kountouras J, Zavos C, Chatzopoulos D. Induction of apoptosis as a proposed pathophysiological link between glaucoma and Helicobacter pylori infection. Med Hypoth. 2004;62:378–81.

    Article  Google Scholar 

  70. Kim JM, Kim SH, Park KH, Han SY, Shim HS. Investigation of the association between Helicobacter pylori infection and normal tension glaucoma. Invest Ophthalmol Vis Sci. 2011;52:665–8.

    Article  PubMed  Google Scholar 

  71. Shokoohi KK, Shin DH, Elliott D, et al. Antiphospholipid antibodies in patients with normal tension glaucoma. Invest Ophthalmol Vis Sci. 1999;40(Suppl):342.

    Google Scholar 

  72. Kremmer S, Kreuzfelder E, Klein R, Bontke N, Henneberg-Quester KB, Steuhl KP, Grosse-Wilde H. Antiphosphatidylserine antibodies are elevated in normal tension glaucoma. Clin Exp Immunol. 2001;125:211–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bachor E, Kremmer S, Kreuzfelder E, Jahnke K, Seidahmadi S. Antiphospholipid antibodies in patients with sensorineural hearing loss. Eur Arch Otorhinolaryngol. 2005;262:622–6.

    Article  PubMed  Google Scholar 

  74. Shazly TA, Aljajeh M, Latina MA. Autoimmune basis of glaucoma. Semin Ophthalmol. 2011;26:278–81.

    Article  PubMed  Google Scholar 

  75. Gloor BP, Sarra GM. Visusverlust und Sehstörung (2. Teil). Schweiz Med Forum. 2004;4:308–12.

    Google Scholar 

  76. Medeiros FA, Vizzeri G, Zangwill LM, Alencar LM, Sample PA, Weinreb RN. Comparison of retinal nerve fiber layer and optic disc imaging for diagnosing glaucoma in patients suspected of having the disease. Ophthalmology. 2008;115:1340–6.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Chauhan BC, O’Leary N, Almobarak FA, et al. Enhanced detection of open-angle glaucoma with an anatomically accurate optical coherence tomography-derived neuroretinal rim parameter. Ophthalmology. 2013;120:535–43.

    Article  PubMed  Google Scholar 

  78. Weinreb RN, Aung T, Medeiros FA. The pathophysiology and treatment of glaucoma. JAMA. 2014;311:1901–11.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Wax MB. The case for autoimmunity in glaucoma. Exp Eye Res. 2011;93:187–90.

    Article  CAS  PubMed  Google Scholar 

  80. Quigley HA, Addicks EM, Green WR, Maumenee AE. Optic nerve damage in human glaucoma. II. The site of injury and susceptibility to damage. Arch Ophthalmol. 1981;99:635–49.

    Article  CAS  PubMed  Google Scholar 

  81. O’Neill EC, Danesh-Meyer HV, Kong GX, et al. Optic disc evaluation in optic neuropathies: the optic disc assessment project. Ophthalmology. 2011;118:964–70.

    Article  PubMed  Google Scholar 

  82. Hutchinson JK, et al. Optic neuropathies: glaucomatous vs. non-glaucomatous. 18th annual glaucoma report. Rev Optom. 2012;149:58.

    Google Scholar 

  83. Moster ML, Kay MD. Glaucoma: the neuro-ophthalmologic differential diagnosis. J Curr Glaucoma Pract. 2008;2:33–8.

    Article  Google Scholar 

  84. Trobe JD, Glaser JS, Cassady JC. Optic atrophy. Differential diagnosis by fundus observation alone. Arch Ophthalmol. 1980;98:1040–5.

    Article  CAS  PubMed  Google Scholar 

  85. CNTGSG. Comparison of glaucomatous progression between untreated patients with normal-tension glaucoma and patients with therapeutically reduced intraocular pressures. Am J Ophthalmol. 1998;126:487–97.

    Article  Google Scholar 

  86. CNTGSG. The effectiveness of intraocular pressure reduction in the treatment of normal-tension glaucoma. Am J Ophthalmol. 1998;126:498–505.

    Article  Google Scholar 

  87. Wentz SM, Kim NJ, Wang J, Amireskandari A, Siesky B, Harris A. Novel therapies for open-angle glaucoma. F1000Prime Rep. 2014;6:102.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Coleman AL. Glaucoma. Lancet. 1999;354:1803–10.

    Article  CAS  PubMed  Google Scholar 

  89. Mozaffarieh M, Flammer J. Is there more to glaucoma treatment than lowering IOP? Surv Ophthalmol. 2007;52:S174–9.

    Article  PubMed  Google Scholar 

  90. Mackenzie P, Cioffi G. How does lowering of intraocular pressure protect the optic nerve? Surv Ophthalmol. 2008;53:S39–43.

    Article  PubMed  Google Scholar 

  91. Enyedi LB, Freedman SF. Safety and efficacy of brimonidine in children with glaucoma. J Pediatr Ophthalmol Strabismus. 2001;5:281–4.

    Article  CAS  Google Scholar 

  92. Schuettauf F, Quinto K, Naskar R, Zurakowski D. Effects of anti-glaucoma medications on ganglion cell survival: the DBA/2J mouse model. Vis Res. 2002;42:2333–7.

    Article  CAS  PubMed  Google Scholar 

  93. Pfeiffer N, Grierson I, Goldsmith H, Hochgesand D, Winkgen-Bohres A, Appleton P. Histological effects in the iris after 3 months of latanoprost therapy: the Mainz 1 Study. Arch Ophthalmol. 2001;119:191–6.

    CAS  PubMed  Google Scholar 

  94. Kaufman PL. Marijuana and glaucoma. Arch Ophthalmol. 1998;116:1512–3.

    Article  CAS  PubMed  Google Scholar 

  95. Nucci C, Bari M, Spano A, Corasaniti M, Bagetta G, Maccarrone M, Morrone LA. Potential roles of (endo)cannabinoids in the treatment of glaucoma: from intraocular pressure control to neuroprotection. Prog Brain Res. 2008;173:451–64.

    Article  CAS  PubMed  Google Scholar 

  96. Hare W, WoldeMussie E, Lai R, Ton H, Ruiz G, Feldmann B, Wijono M, Chun T, Wheeler L. Efficacy and safety of memantine, an NMDA-type open-channel blocker, for reduction of retinal injury associated with experimental glaucoma in rat and monkey. Surv Ophthalmol. 2001;45:S284–9 (discussion S295–6).

    Article  PubMed  Google Scholar 

  97. Pang IH, Johnson EC, Jia L, Cepurna WO, Shepard AR, Hellberg MR, Clark AF, Morrison JC. Evaluation of inducible nitric oxide synthase in glaucomatous optic neuropathy and pressure-induced optic nerve damage. Invest Ophthalmol Vis Sci. 2005;46:1313–21.

    Article  PubMed  Google Scholar 

  98. Foxton RH, Finkelstein A, Vijay S, Dahlmann-Noor A, Khaw PT, Morgan JE, Shima DT, Ng YS. VEGF-A is necessary and sufficient for retinal neuroprotection in models of experimental glaucoma. Am J Pathol. 2013;182:1379–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kaufman PL, Rasmussen CA. Advances in glaucoma treatment and management: outflow drugs. Invest Ophthalmol Vis Sci. 2012;53:2495–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bell K, Gramlich OW, Von Thun Und Hohenstein-Blaul N, Beck S, Funke S, Wilding C, Pfeiffer N, Grus FH. Does autoimmunity play a part in the pathogenesis of glaucoma? Prog Retin Eye Res. 2013;36:199–216.

    Article  CAS  PubMed  Google Scholar 

  101. Adatia FA, et al. Chronic open-angle glaucoma. Can Fam Physician. 2005;51(9):1229–37.

    PubMed  PubMed Central  Google Scholar 

  102. Read RW, et al. Nongranulomatous inflammation: uveitis, endophthalmitis, panophthalmitis, and sequelae. In: Tasman W, et al., editors. Duane’s clinical ophthalmology. Baltimore: Lippincott Williams & Wilkins; 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armando De Virgilio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rizzo, M.I., Greco, A., De Virgilio, A. et al. Glaucoma: recent advances in the involvement of autoimmunity. Immunol Res 65, 207–217 (2017). https://doi.org/10.1007/s12026-016-8837-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-016-8837-3

Keywords

Navigation