Skip to main content

Advertisement

Log in

Fundamental role of C1q in autoimmunity and inflammation

  • AUTOIMMUNITY/IMMUNOREGULATION/INFLAMMATION
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

C1q, historically viewed as the initiating component of the classical complement pathway, also exhibits a variety of complement-independent activities in both innate and acquired immunity. Recent studies focusing on C1q’s suppressive role in the immune system have provided new insight into how abnormal C1q expression and bioactivity may contribute to autoimmunity. In particular, molecular networks involving C1q interactions with cell surface receptors and other ligands are emerging as mechanisms involved in C1q’s modulation of immunity. Here, we discuss the role of C1q in controlling immune cell function, including recently elucidated mechanisms of action, and suggest how these processes are critical for maintaining tissue homeostasis under steady-state conditions and in preventing autoimmunity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Walport MJ. Complement: second of two parts. N Engl J Med. 2001;344(15):1140–4. doi:10.1056/NEJM200104123441506.

    Article  CAS  PubMed  Google Scholar 

  2. Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010;11(9):785–97. doi:10.1038/ni.1923.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  3. Reid KB, Porter RR. Subunit composition and structure of subcomponent C1q of the first component of human complement. Biochem J. 1976;155(1):19–23.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  4. Nicholson-Weller A, Klickstein LB. C1q-binding proteins and C1q receptors. Curr Opin Immunol. 1999;11(1):42–6.

    Article  CAS  PubMed  Google Scholar 

  5. Shapiro L, Scherer PE. The crystal structure of a complement-1q family protein suggests an evolutionary link to tumor necrosis factor. Curr biol CB. 1998;8(6):335–8.

    Article  CAS  PubMed  Google Scholar 

  6. Vandivier RW, Ogden CA, Fadok VA, Hoffmann PR, Brown KK, Botto M, Walport MJ, Fisher JH, Henson PM, Greene KE. Role of surfactant proteins A, D, and C1q in the clearance of apoptotic cells in vivo and in vitro: calreticulin and CD91 as a common collectin receptor complex. J Immunol. 2002;169(7):3978–86.

    Article  CAS  PubMed  Google Scholar 

  7. Teixeira JE, Heron BT, Huston CD. C1q- and collectin-dependent phagocytosis of apoptotic host cells by the intestinal protozoan Entamoeba histolytica. J Infect Dis. 2008;198(7):1062–70. doi:10.1086/591628.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Paidassi H, Tacnet-Delorme P, Garlatti V, Darnault C, Ghebrehiwet B, Gaboriaud C, Arlaud GJ, Frachet P. C1q binds phosphatidylserine and likely acts as a multiligand-bridging molecule in apoptotic cell recognition. J Immunol. 2008;180(4):2329–38.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Nayak A, Pednekar L, Reid KB, Kishore U. Complement and non-complement activating functions of C1q: a prototypical innate immune molecule. Innate Immun. 2012;18(2):350–63. doi:10.1177/1753425910396252.

    Article  CAS  PubMed  Google Scholar 

  10. Gaboriaud C, Frachet P, Thielens NM, Arlaud GJ. The human c1q globular domain: structure and recognition of non-immune self ligands. Front Immunol. 2011;2:92. doi:10.3389/fimmu.2011.00092.

    PubMed Central  PubMed  Google Scholar 

  11. Bohlson SS, Fraser DA, Tenner AJ. Complement proteins C1q and MBL are pattern recognition molecules that signal immediate and long-term protective immune functions. Mol Immunol. 2007;44(1–3):33–43. doi:10.1016/j.molimm.2006.06.021.

    Article  CAS  PubMed  Google Scholar 

  12. Korb LC, Ahearn JM. C1q binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol. 1997;158(10):4525–8.

    CAS  PubMed  Google Scholar 

  13. Brencicova E, Diebold SS. Nucleic acids and endosomal pattern recognition: how to tell friend from foe? Front Cell Infect Microbiol. 2013;3:37. doi:10.3389/fcimb.2013.00037.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Tacnet-Delorme P, Chevallier S, Arlaud GJ. Beta-amyloid fibrils activate the C1 complex of complement under physiological conditions: evidence for a binding site for A beta on the C1q globular regions. J Immunol. 2001;167(11):6374–81.

    Article  CAS  PubMed  Google Scholar 

  15. Klein MA, Kaeser PS, Schwarz P, Weyd H, Xenarios I, Zinkernagel RM, Carroll MC, Verbeek JS, Botto M, Walport MJ, Molina H, Kalinke U, Acha-Orbea H, Aguzzi A. Complement facilitates early prion pathogenesis. Nat Med. 2001;7(4):488–92. doi:10.1038/86567.

    Article  CAS  PubMed  Google Scholar 

  16. Sim RB, Kishore U, Villiers CL, Marche PN, Mitchell DA. C1q binding and complement activation by prions and amyloids. Immunobiology. 2007;212(4–5):355–62. doi:10.1016/j.imbio.2007.04.001.

    Article  CAS  PubMed  Google Scholar 

  17. Biro A, Thielens NM, Cervenak L, Prohaszka Z, Fust G, Arlaud GJ. Modified low density lipoproteins differentially bind and activate the C1 complex of complement. Mol Immunol. 2007;44(6):1169–77. doi:10.1016/j.molimm.2006.06.013.

    Article  CAS  PubMed  Google Scholar 

  18. Garlatti V, Chouquet A, Lunardi T, Vives R, Paidassi H, Lortat-Jacob H, Thielens NM, Arlaud GJ, Gaboriaud C. Cutting edge: C1q binds deoxyribose and heparan sulfate through neighboring sites of its recognition domain. J Immunol. 2010;185(2):808–12. doi:10.4049/jimmunol.1000184.

    Article  CAS  PubMed  Google Scholar 

  19. Bredt W, Wellek B, Brunner H, Loos M. Interactions between mycoplasma pneumoniae and the first components of complement. Infect Immun. 1977;15(1):7–12.

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Santoro F, Ouaissi MA, Pestel J, Capron A. Interaction between Schistosoma mansoni and the complement system: binding of C1q to schistosomula. J Immunol. 1980;124(6):2886–91.

    CAS  PubMed  Google Scholar 

  21. Scott D, Botto M. The paradoxical roles of C1q and C3 in autoimmunity. Immunobiology. 2015;. doi:10.1016/j.imbio.2015.05.001.

    PubMed  Google Scholar 

  22. Ogden CA, deCathelineau A, Hoffmann PR, Bratton D, Ghebrehiwet B, Fadok VA, Henson PM. C1q and mannose binding lectin engagement of cell surface calreticulin and CD91 initiates macropinocytosis and uptake of apoptotic cells. J Exp Med. 2001;194(6):781–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Leffler J, Bengtsson AA, Blom AM. The complement system in systemic lupus erythematosus: an update. Ann Rheum Dis. 2014;73(9):1601–6. doi:10.1136/annrheumdis-2014-205287.

    Article  CAS  PubMed  Google Scholar 

  24. Eggleton P, Tenner AJ, Reid KB. C1q receptors. Clin Exp Immunol. 2000;120(3):406–12.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  25. Son M, Santiago-Schwarz F, Al-Abed Y, Diamond B. C1q limits dendritic cell differentiation and activation by engaging LAIR-1. Proc Natl Acad Sci USA. 2012;109(46):E3160–7. doi:10.1073/pnas.1212753109.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Hosszu KK, Valentino A, Vinayagasundaram U, Vinayagasundaram R, Joyce MG, Ji Y, Peerschke EI, Ghebrehiwet B. DC-SIGN, C1q, and gC1qR form a trimolecular receptor complex on the surface of monocyte-derived immature dendritic cells. Blood. 2012;120(6):1228–36. doi:10.1182/blood-2011-07-369728.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Zutter MM, Edelson BT. The alpha2beta1 integrin: a novel collectin/C1q receptor. Immunobiology. 2007;212(4–5):343–53. doi:10.1016/j.imbio.2006.11.013.

    Article  CAS  PubMed  Google Scholar 

  28. Fraser DA, Pisalyaput K, Tenner AJ. C1q enhances microglial clearance of apoptotic neurons and neuronal blebs, and modulates subsequent inflammatory cytokine production. J Neurochem. 2010;112(3):733–43. doi:10.1111/j.1471-4159.2009.06494.x.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Fraser DA, Tenner AJ. Innate immune proteins C1q and mannan-binding lectin enhance clearance of atherogenic lipoproteins by human monocytes and macrophages. J Immunol. 2010;185(7):3932–9. doi:10.4049/jimmunol.1002080.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Duus K, Hansen EW, Tacnet P, Frachet P, Arlaud GJ, Thielens NM, Houen G. Direct interaction between CD91 and C1q. FEBS J. 2010;277(17):3526–37. doi:10.1111/j.1742-4658.2010.07762.x.

    Article  CAS  PubMed  Google Scholar 

  31. Steino A, Jorgensen CS, Laursen I, Houen G. Interaction of C1q with the receptor calreticulin requires a conformational change in C1q. Scand J Immunol. 2004;59(5):485–95. doi:10.1111/j.0300-9475.2004.01425.x.

    Article  CAS  PubMed  Google Scholar 

  32. Paidassi H, Tacnet-Delorme P, Verneret M, Gaboriaud C, Houen G, Duus K, Ling WL, Arlaud GJ, Frachet P. Investigations on the C1q-calreticulin-phosphatidylserine interactions yield new insights into apoptotic cell recognition. J Mol Biol. 2011;408(2):277–90. doi:10.1016/j.jmb.2011.02.029.

    Article  CAS  PubMed  Google Scholar 

  33. Ma W, Rai V, Hudson BI, Song F, Schmidt AM, Barile GR. RAGE binds C1q and enhances C1q-mediated phagocytosis. Cell Immunol. 2012;274(1–2):72–82. doi:10.1016/j.cellimm.2012.02.001S0008-8749(12)00022-6.

    Article  CAS  PubMed  Google Scholar 

  34. Ramirez-Ortiz ZG, Pendergraft WF 3rd, Prasad A, Byrne MH, Iram T, Blanchette CJ, Luster AD, Hacohen N, El Khoury J, Means TK. The scavenger receptor SCARF1 mediates the clearance of apoptotic cells and prevents autoimmunity. Nat Immunol. 2013;14(9):917–26. doi:10.1038/ni.2670.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  35. Galvan MD, Foreman DB, Zeng E, Tan JC, Bohlson SS. Complement component C1q regulates macrophage expression of Mer tyrosine kinase to promote clearance of apoptotic cells. J Immunol. 2012;188(8):3716–23. doi:10.4049/jimmunol.1102920.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Ghebrehiwet B, Hosszu KK, Valentino A, Peerschke EI. The C1q family of proteins: insights into the emerging non-traditional functions. Frontiers in immunology. 2012;. doi:10.3389/fimmu.2012.00052.

    Google Scholar 

  37. Benoit ME, Clarke EV, Morgado P, Fraser DA, Tenner AJ. Complement protein C1q directs macrophage polarization and limits inflammasome activity during the uptake of apoptotic cells. J Immunol. 2012;188(11):5682–93. doi:10.4049/jimmunol.1103760.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Clarke EV, Weist BM, Walsh CM, Tenner AJ. Complement protein C1q bound to apoptotic cells suppresses human macrophage and dendritic cell-mediated Th17 and Th1 T cell subset proliferation. J Leukoc Biol. 2015;97(1):147–60. doi:10.1189/jlb.3A0614-278R.

    Article  CAS  PubMed  Google Scholar 

  39. Meyaard L, Adema GJ, Chang C, Woollatt E, Sutherland GR, Lanier LL, Phillips JH. LAIR-1, a novel inhibitory receptor expressed on human mononuclear leukocytes. Immunity. 1997;7(2):283–90.

    Article  CAS  PubMed  Google Scholar 

  40. Meyaard L. The inhibitory collagen receptor LAIR-1 (CD305). J Leukoc Biol. 2008;83(4):799–803. doi:10.1189/jlb.0907609.

    Article  CAS  PubMed  Google Scholar 

  41. Son M, Diamond B. C1q-mediated repression of human monocytes is regulated by leukocyte-associated ig-like receptor 1 (LAIR-1). Mol Med. 2015;20(1):559–68. doi:10.2119/molmed.2014.00185.

    PubMed Central  PubMed  Google Scholar 

  42. Nordkamp MJ, van Eijk M, Urbanus RT, Bont L, Haagsman HP, Meyaard L. Leukocyte-associated Ig-like receptor-1 is a novel inhibitory receptor for surfactant protein D. J Leukoc Biol. 2014;96(1):105–11. doi:10.1189/jlb.3AB0213-092RR.

    Article  Google Scholar 

  43. Kouser L, Madhukaran SP, Shastri A, Saraon A, Ferluga J, Al-Mozaini M, Kishore U. Emerging and novel functions of complement protein C1q. Front Immunol. 2015;6:317. doi:10.3389/fimmu.2015.00317.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Gill MA, Blanco P, Arce E, Pascual V, Banchereau J, Palucka AK. Blood dendritic cells and DC-poietins in systemic lupus erythematosus. Hum Immunol. 2002;63(12):1172–80.

    Article  CAS  PubMed  Google Scholar 

  45. Walport MJ, Davies KA, Botto M. C1q and systemic lupus erythematosus. Immunobiology. 1998;199(2):265–85. doi:10.1016/S0171-2985(98)80032-6.

    Article  CAS  PubMed  Google Scholar 

  46. Botto M, Dell’Agnola C, Bygrave AE, Thompson EM, Cook HT, Petry F, Loos M, Pandolfi PP, Walport MJ. Homozygous C1q deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet. 1998;19(1):56–9. doi:10.1038/ng0598-56.

    Article  CAS  PubMed  Google Scholar 

  47. Martens HA, Zuurman MW, de Lange AH, Nolte IM, van der Steege G, Navis GJ, Kallenberg CG, Seelen MA, Bijl M. Analysis of C1q polymorphisms suggests association with systemic lupus erythematosus, serum C1q and CH50 levels and disease severity. Ann Rheum Dis. 2009;68(5):715–20. doi:10.1136/ard.2007.085688.

    Article  CAS  PubMed  Google Scholar 

  48. Trouw LA, Daha N, Kurreeman FA, Bohringer S, Goulielmos GN, Westra HJ, Zhernakova A, Franke L, Stahl EA, Levarht EW, Stoeken-Rijsbergen G, Verduijn W, Roos A, Li Y, Houwing-Duistermaat JJ, Huizinga TW, Toes RE. Genetic variants in the region of the C1q genes are associated with rheumatoid arthritis. Clin Exp Immunol. 2013;173(1):76–83. doi:10.1111/cei.12097.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  49. Baumann I, Kolowos W, Voll RE, Manger B, Gaipl U, Neuhuber WL, Kirchner T, Kalden JR, Herrmann M. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum. 2002;46(1):191–201. doi:10.1002/1529-0131(200201)46:1<191:AID-ART10027>3.0.CO;2-K.

    Article  PubMed  Google Scholar 

  50. Gaipl US, Munoz LE, Grossmayer G, Lauber K, Franz S, Sarter K, Voll RE, Winkler T, Kuhn A, Kalden J, Kern P, Herrmann M. Clearance deficiency and systemic lupus erythematosus (SLE). J Autoimmun. 2007;28(2–3):114–21. doi:10.1016/j.jaut.2007.02.005.

    Article  PubMed  Google Scholar 

  51. Yamada M, Oritani K, Kaisho T, Ishikawa J, Yoshida H, Takahashi I, Kawamoto S, Ishida N, Ujiie H, Masaie H, Botto M, Tomiyama Y, Matsuzawa Y. Complement C1q regulates LPS-induced cytokine production in bone marrow-derived dendritic cells. Eur J Immunol. 2004;34(1):221–30. doi:10.1002/eji.200324026.

    Article  CAS  PubMed  Google Scholar 

  52. Bobak DA, Gaither TA, Frank MM, Tenner AJ. Modulation of FcR function by complement: subcomponent C1q enhances the phagocytosis of IgG-opsonized targets by human monocytes and culture-derived macrophages. J Immunol. 1987;138(4):1150–6.

    CAS  PubMed  Google Scholar 

  53. Cao W, Bobryshev YV, Lord RS, Oakley RE, Lee SH, Lu J. Dendritic cells in the arterial wall express C1q: potential significance in atherogenesis. Cardiovasc Res. 2003;60(1):175–86.

    Article  CAS  PubMed  Google Scholar 

  54. Hosszu KK, Santiago-Schwarz F, Peerschke EI, Ghebrehiwet B. Evidence that a C1q/C1qR system regulates monocyte-derived dendritic cell differentiation at the interface of innate and acquired immunity. Innate Immun. 2010;16(2):115–27. doi:10.1177/1753425909339815.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Agnello V, Koffler D, Eisenberg JW, Winchester RJ, Kunkel HG. C1q precipitins in the sera of patients with systemic lupus erythematosus and other hypocomplementemic states: characterization of high and low molecular weight types. J Exp Med. 1971;134(3):228–41.

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Antes U, Heinz HP, Loos M. Evidence for the presence of autoantibodies to the collagen-like portion of C1q in systemic lupus erythematosus. Arthritis Rheum. 1988;31(4):457–64.

    Article  CAS  PubMed  Google Scholar 

  57. Seelen MA, Trouw LA, Daha MR. Diagnostic and prognostic significance of anti-C1q antibodies in systemic lupus erythematosus. Curr Opin Nephrol Hypertens. 2003;12(6):619–24. doi:10.1097/01.mnh.0000098768.18213.70.

    Article  PubMed  Google Scholar 

  58. Marto N, Bertolaccini ML, Calabuig E, Hughes GR, Khamashta MA. Anti-C1q antibodies in nephritis: correlation between titres and renal disease activity and positive predictive value in systemic lupus erythematosus. Ann Rheum Dis. 2005;64(3):444–8. doi:10.1136/ard.2004.024943.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS, Nouri N, Micheva KD, Mehalow AK, Huberman AD, Stafford B, Sher A, Litke AM, Lambris JD, Smith SJ, John SW, Barres BA. The classical complement cascade mediates CNS synapse elimination. Cell. 2007;131(6):1164–78. doi:10.1016/j.cell.2007.10.036.

    Article  CAS  PubMed  Google Scholar 

  60. Stephan AH, Barres BA, Stevens B. The complement system: an unexpected role in synaptic pruning during development and disease. Annu Rev Neurosci. 2012;35:369–89. doi:10.1146/annurev-neuro-061010-113810.

    Article  CAS  PubMed  Google Scholar 

  61. Chu Y, Jin X, Parada I, Pesic A, Stevens B, Barres B, Prince DA. Enhanced synaptic connectivity and epilepsy in C1q knockout mice. Proc Natl Acad Sci USA. 2010;107(17):7975–80. doi:10.1073/pnas.0913449107.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Ma Y, Ramachandran A, Ford N, Parada I, Prince DA. Remodeling of dendrites and spines in the C1q knockout model of genetic epilepsy. Epilepsia. 2013;54(7):1232–9. doi:10.1111/epi.12195.

    Article  PubMed Central  PubMed  Google Scholar 

  63. Stephan AH, Madison DV, Mateos JM, Fraser DA, Lovelett EA, Coutellier L, Kim L, Tsai HH, Huang EJ, Rowitch DH, Berns DS, Tenner AJ, Shamloo M, Barres BA. A dramatic increase of C1q protein in the CNS during normal aging. J Neurosc Off J Soc Neurosci. 2013;33(33):13460–74. doi:10.1523/JNEUROSCI.1333-13.2013.

    Article  CAS  Google Scholar 

  64. Fan R, Tenner AJ. Complement C1q expression induced by Abeta in rat hippocampal organotypic slice cultures. Exp Neurol. 2004;185(2):241–53.

    Article  CAS  PubMed  Google Scholar 

  65. Wyss-Coray T. Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med. 2006;12(9):1005–15. doi:10.1038/nm1484.

    CAS  PubMed  Google Scholar 

  66. Rogers J, Cooper NR, Webster S, Schultz J, McGeer PL, Styren SD, Civin WH, Brachova L, Bradt B, Ward P, et al. Complement activation by beta-amyloid in Alzheimer disease. Proc Natl Acad Sci USA. 1992;89(21):10016–20.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  67. Sarvari M, Vago I, Weber CS, Nagy J, Gal P, Mak M, Kosa JP, Zavodszky P, Pazmany T. Inhibition of C1q-beta-amyloid binding protects hippocampal cells against complement mediated toxicity. J Neuroimmunol. 2003;137(1–2):12–8.

    Article  CAS  PubMed  Google Scholar 

  68. Schmidt AM, Hori O, Cao R, Yan SD, Brett J, Wautier JL, Ogawa S, Kuwabara K, Matsumoto M, Stern D. RAGE: a novel cellular receptor for advanced glycation end products. Diabetes. 1996;45(Suppl 3):S77–80.

    Article  CAS  PubMed  Google Scholar 

  69. Yan SD, Chen X, Fu J, Chen M, Zhu H, Roher A, Slattery T, Zhao L, Nagashima M, Morser J, Migheli A, Nawroth P, Stern D, Schmidt AM. RAGE and amyloid-beta peptide neurotoxicity in Alzheimer’s disease. Nature. 1996;382(6593):685–91. doi:10.1038/382685a0.

    Article  CAS  PubMed  Google Scholar 

  70. Pisalyaput K, Tenner AJ. Complement component C1q inhibits beta-amyloid- and serum amyloid P-induced neurotoxicity via caspase- and calpain-independent mechanisms. J Neurochem. 2008;104(3):696–707. doi:10.1111/j.1471-4159.2007.05012.x.

    CAS  PubMed  Google Scholar 

  71. Benoit ME, Tenner AJ. Complement protein C1q-mediated neuroprotection is correlated with regulation of neuronal gene and microRNA expression. J neurosci Off J Soc Neurosci. 2011;31(9):3459–69. doi:10.1523/JNEUROSCI.3932-10.2011.

    Article  CAS  Google Scholar 

  72. Benoit ME, Hernandez MX, Dinh ML, Benavente F, Vasquez O, Tenner AJ. C1q-induced LRP1B and GPR6 proteins expressed early in Alzheimer disease mouse models, are essential for the C1q-mediated protection against amyloid-beta neurotoxicity. J Biol Chem. 2013;288(1):654–65. doi:10.1074/jbc.M112.400168.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  73. Sun S, Jiao Y, Wei W, Postlethwaite AE, Gu W, Sun D. Comparison of LAIR-1 genetic pathways in murine versus human internal organs. Gene. 2014;552(1):140–5. doi:10.1016/j.gene.2014.09.027.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank H.S. Yoon for discussions and S. Jones for help. This work was supported by a grant from the National Institute of Arthritis and Musculoskeletal and Skin Disease of the National Institutes of Health (K01AR065506-01 for M.S.; R01AR07084 for B.D.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Betty Diamond.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, M., Diamond, B. & Santiago-Schwarz, F. Fundamental role of C1q in autoimmunity and inflammation. Immunol Res 63, 101–106 (2015). https://doi.org/10.1007/s12026-015-8705-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-015-8705-6

Keywords

Navigation