Skip to main content

Advertisement

Log in

Roquin—a multifunctional regulator of immune homeostasis

  • Review
  • Published:
Genes & Immunity Submit manuscript

Abstract

Roquin-1 (Rc3h1) is an E3 ubiquitin ligase originally discovered in a mutational screen for genetic factors contributory to systemic lupus erythematosus-like symptoms in mice. A single base-pair mutation in the Rc3h1 gene resulted in the manifestation of autoantibody production and sustained immunological inflammation characterized by excessive T follicular helper cell activation and formation of germinal centers. Subsequent studies have uncovered a multifactorial process by which Roquin-1 contributes to the maintenance of immune homeostasis. Through its interactions with partner proteins, Roquin-1 targets mRNAs for decay with inducible costimulator being a primary target. In this review, we discuss newly discovered functions of Roquin-1 in the immune system and inflammation, and in disease manifestation, and discuss avenues of further research. A model is presented for the role of Roquin in health and disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2

Similar content being viewed by others

References

  1. Yu D, Tan AH, Hu X, Athanasopoulos V, Simpson N, Silva DG et al. Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA. Nature 2007; 450: 299–303.

    Article  CAS  Google Scholar 

  2. Vinuesa CG, Cook MC, Angelucci C, Athanasopoulos V, Rui L, Hill KM et al. A RING-type ubiquitin ligase family member required to repress follicular helper T cells and autoimmunity. Nature 2005; 435: 452–458.

    Article  CAS  Google Scholar 

  3. Metzger MB, Pruneda JN, Klevit RE, Weissman AM . RING-type E3 ligases: master manipulators of E2 ubiquitin-conjugating enzymes and ubiquitination. Biochim Biophys Acta 2014; 1843: 47–60.

    Article  CAS  Google Scholar 

  4. Bernassola F, Karin M, Ciechanover A, Melino G . The HECT family of E3 ubiquitin ligases: multiple players in cancer development. Cancer Cell 2008; 14: 10–21.

    Article  CAS  Google Scholar 

  5. Li W, Gao B, Lee SM, Bennett K, Fang D . RLE-1 an E3 ubiquitin ligase, regulates C. elegans aging by catalyzing DAF-16 polyubiquitination. Dev Cell 2007; 12: 235–246.

    Article  CAS  Google Scholar 

  6. Maruyama T, Araki T, Kawarazaki Y, Naguro I, Heynen S, Aza-Blanc P et al. Roquin-2 promotes ubiquitin-mediated degradation of ASK1 to regulate stress responses. Sci Signal 2014; 7: ra8.

    Article  Google Scholar 

  7. Glasmacher E, Hoefig KP, Vogel KU, Rath N, Du L, Wolf C et al. Roquin binds inducible costimulator mRNA and effectors of mRNA decay to induce microRNA-independent post-transcriptional repression. Nat Immunol 2010; 11: 725–733.

    Article  CAS  Google Scholar 

  8. Tan D, Zhou M, Kiledjian M, Tong L . The ROQ domain of Roquin recognizes mRNA constitutive-decay element and double-stranded RNA. Nat Struct Mol Biol 2014; 21: 679–685.

    Article  CAS  Google Scholar 

  9. Schlundt A, Heinz GA, Janowski R, Geerlof A, Stehle R, Heissmeyer V et al. Structural basis for RNA recognition in roquin-mediated post-transcriptional gene regulation. Nat Struct Mol Biol 2014; 21: 671–678.

    Article  CAS  Google Scholar 

  10. Leppek K, Schott J, Reitter S, Poetz F, Hammond MC, Stoecklin G . Roquin promotes constitutive mRNA decay via a conserved class of stem-loop recognition motifs. Cell 2013; 153: 869–881.

    Article  CAS  Google Scholar 

  11. Vogel KU, Edelmann SL, Jeltsch KM, Bertossi A, Heger K, Heinz GA et al. Roquin paralogs 1 and 2 redundantly repress the Icos and Ox40 costimulator mRNAs and control follicular helper T cell differentiation. Immunity 2013; 38: 655–668.

    Article  CAS  Google Scholar 

  12. Murakawa Y, Hinz M, Mothes J, Schuetz A, Uhl M, Wyler E et al. RC3H1 post-transcriptionally regulates A20 mRNA and modulates the activity of the IKK/NF-kappaB pathway. Nat Commun 2015; 6: 7367.

    Article  CAS  Google Scholar 

  13. Athanasopoulos V, Barker A, Yu D, Tan AH, Srivastava M, Contreras N et al. The ROQUIN family of proteins localizes to stress granules via the ROQ domain and binds target mRNAs. FEBS J 2010; 277: 2109–2127.

    Article  CAS  Google Scholar 

  14. Srivastava M, Duan G, Kershaw NJ, Athanasopoulos V, Yeo JH, Ose T et al. Roquin binds microRNA-146a and Argonaute2 to regulate microRNA homeostasis. Nat Commun 2015; 6: 6253.

    Article  CAS  Google Scholar 

  15. Mino T, Takeuchi O . Regnase-1and Roquin regulate inflammatory mRNAs. Oncotarget 2015; 6: 17869–17870.

    Article  Google Scholar 

  16. Mino T, Murakawa Y, Fukao A, Vandenbon A, Wessels HH, Ori D et al. Regnase-1 and Roquin regulate a common element in inflammatory mRNAs by spatiotemporally distinct mechanisms. Cell 2015; 161: 1058–1073.

    Article  CAS  Google Scholar 

  17. Lee RC, Feinbaum RL, Ambros V . The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843–854.

    Article  CAS  Google Scholar 

  18. Nakasa T, Miyaki S, Okubo A, Hashimoto M, Nishida K, Ochi M et al. Expression of microRNA-146 in rheumatoid arthritis synovial tissue. Arthritis Rheum 2008; 58: 1284–1292.

    Article  CAS  Google Scholar 

  19. Coskun M, Bjerrum JT, Seidelin JB, Nielsen OH . MicroRNAs in inflammatory bowel disease—pathogenesis, diagnostics and therapeutics. World J Gastroenterol 2012; 18: 4629–4634.

    Article  CAS  Google Scholar 

  20. Wu F, Guo NJ, Tian H, Marohn M, Gearhart S, Bayless TM et al. Peripheral blood microRNAs distinguish active ulcerative colitis and Crohn's disease. Inflamm Bowel Dis 2011; 17: 241–250.

    Article  Google Scholar 

  21. Wu F, Zhang S, Dassopoulos T, Harris ML, Bayless TM, Meltzer SJ et al. Identification of microRNAs associated with ileal and colonic Crohn's disease. Inflamm Bowel Dis 2010; 16: 1729–1738.

    Article  Google Scholar 

  22. Wu F, Zikusoka M, Trindade A, Dassopoulos T, Harris ML, Bayless TM et al. MicroRNAs are differentially expressed in ulcerative colitis and alter expression of macrophage inflammatory peptide-2 alpha. Gastroenterology 2008; 135: 1624–1635.e24.

    Article  CAS  Google Scholar 

  23. Folini M, Gandellini P, Longoni N, Profumo V, Callari M, Pennati M et al. miR-21: an oncomir on strike in prostate cancer. Mol Cancer 2010; 9: 12.

    Article  Google Scholar 

  24. Schaefer JS, Attumi T, Opekun AR, Abraham B, Hou J, Shelby H et al. MicroRNA signatures differentiate Crohn's disease from ulcerative colitis. BMC Immunol 2015; 16: 5.

    Article  Google Scholar 

  25. Schaefer JS, Montufar-Solis D, Vigneswaran N, Klein JR . Selective upregulation of microRNA expression in peripheral blood leukocytes in IL-10-/- mice precedes expression in the colon. J Immunol 2011; 187: 5834–5841.

    Article  CAS  Google Scholar 

  26. Pauley KM, Stewart CM, Gauna AE, Dupre LC, Kuklani R, Chan AL et al. Altered miR-146a expression in Sjogren's syndrome and its functional role in innate immunity. Eur J Immunol 2011; 41: 2029–2039.

    Article  CAS  Google Scholar 

  27. Pauley KM, Satoh M, Chan AL, Bubb MR, Reeves WH, Chan EK . Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients. Arthritis Res Ther 2008; 10: R101.

    Article  Google Scholar 

  28. Pratama A, Srivastava M, Williams NJ, Papa I, Lee SK, Dinh XT et al. MicroRNA-146a regulates ICOS-ICOSL signalling to limit accumulation of T follicular helper cells and germinal centres. Nat Commun 2015; 6: 6436.

    Article  CAS  Google Scholar 

  29. Jeltsch KM, Hu D, Brenner S, Zoller J, Heinz GA, Nagel D et al. Cleavage of roquin and regnase-1 by the paracaspase MALT1 releases their cooperatively repressed targets to promote T(H)17 differentiation. Nat Immunol 2014; 15: 1079–1089.

    Article  CAS  Google Scholar 

  30. Akira S . Regnase-1, a ribonuclease involved in the regulation of immune responses. Cold Spring Harb Symp Quant Biol 2013; 78: 51–60.

    Article  Google Scholar 

  31. Uehata T, Iwasaki H, Vandenbon A, Matsushita K, Hernandez-Cuellar E, Kuniyoshi K et al. Malt1-induced cleavage of regnase-1 in CD4(+) helper T cells regulates immune activation. Cell 2013; 153: 1036–1049.

    Article  CAS  Google Scholar 

  32. Vinuesa CG, Goodnow CC . Illuminating autoimmune regulators through controlled variation of the mouse genome sequence. Immunity 2004; 20: 669–679.

    Article  CAS  Google Scholar 

  33. Montufar-Solis D, Vigneswaran N, Nakra N, Schaefer JS, Klein JR . Hematopoietic not systemic impairment of Roquin expression accounts for intestinal inflammation in Roquin-deficient mice. Sci Rep 2014; 4: 4920.

    Article  CAS  Google Scholar 

  34. Linterman MA, Rigby RJ, Wong R, Silva D, Withers D, Anderson G et al. Roquin differentiates the specialized functions of duplicated T cell costimulatory receptor genes CD28 and ICOS. Immunity 2009; 30: 228–241.

    Article  CAS  Google Scholar 

  35. Hondowicz BD, Batheja AO, Metzgar MH, Caton AJ, Erikson J . ICOS expression by effector T cells influences the ability of regulatory T cells to inhibit anti-chromatin B cell responses in recipient mice. J Autoimmun 2010; 34: 460–468.

    Article  CAS  Google Scholar 

  36. Schaefer JS, Montufar-Solis D, Nakra N, Vigneswaran N, Klein JR . Small intestine inflammation in Roquin-mutant and Roquin-deficient mice. PLoS One 2013; 8: e56436.

    Article  CAS  Google Scholar 

  37. Joshi NS, Cui W, Chandele A, Lee HK, Urso DR, Hagman J et al. Inflammation directs memory precursor and short-lived effector CD8(+) T cell fates via the graded expression of T-bet transcription factor. Immunity 2007; 27: 281–295.

    Article  CAS  Google Scholar 

  38. Beier KC, Hutloff A, Dittrich AM, Heuck C, Rauch A, Buchner K et al. Induction, binding specificity and function of human ICOS. Eur J Immunol 2000; 30: 3707–3717.

    Article  CAS  Google Scholar 

  39. Salomon B, Lenschow DJ, Rhee L, Ashourian N, Singh B, Sharpe A et al. B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity 2000; 12: 431–440.

    Article  CAS  Google Scholar 

  40. Vocanson M, Rozieres A, Hennino A, Poyet G, Gaillard V, Renaudineau S et al. Inducible costimulator (ICOS) is a marker for highly suppressive antigen-specific T cells sharing features of TH17/TH1 and regulatory T cells. J Allergy Clin Immunol 2010; 126: 280–289.

    Article  CAS  Google Scholar 

  41. Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I . Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 1993; 75: 253–261.

    Article  CAS  Google Scholar 

  42. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W . Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993; 75: 263–274.

    Article  CAS  Google Scholar 

  43. Claesson MH, Rudolphi A, Kofoed S, Poulsen SS, Reimann J . CD4+ T lymphocytes injected into severe combined immunodeficient (SCID) mice lead to an inflammatory and lethal bowel disease. Clin Exp Immunol 1996; 104: 491–500.

    Article  CAS  Google Scholar 

  44. Powrie F, Leach MW, Mauze S, Caddle LB, Coffman RL . Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol 1993; 5: 1461–1471.

    Article  CAS  Google Scholar 

  45. Ellyard JI, Chia T, Rodriguez-Pinilla SM, Martin JL, Hu X, Navarro-Gonzalez M et al. Heterozygosity for Roquinsan leads to angioimmunoblastic T-cell lymphoma-like tumors in mice. Blood 2012; 120: 812–821.

    Article  Google Scholar 

  46. Auguste T, Travert M, Tarte K, Ame-Thomas P, Artchounin C, Martin-Garcia N et al. ROQUIN/RC3H1 alterations are not found in angioimmunoblastic T-cell lymphoma. PLoS One 2013; 8: e64536.

    Article  CAS  Google Scholar 

  47. Kim HJ, Ji YR, Kim MO, Yu DH, Shin MJ, Yuh HS et al. The role of Roquin overexpression in the modulation of signaling during in vitro and ex vivo T-cell activation. Biochem Biophys Res Commun 2012; 417: 280–286.

    Article  CAS  Google Scholar 

  48. Harada Y, Ohgai D, Watanabe R, Okano K, Koiwai O, Tanabe K et al. A single amino acid alteration in cytoplasmic domain determines IL-2 promoter activation by ligation of CD28 but not inducible costimulator (ICOS). J Exp Med 2003; 197: 257–262.

    Article  Google Scholar 

  49. Watanabe R, Harada Y, Takeda K, Takahashi J, Ohnuki K, Ogawa S et al. Grb2 and Gads exhibit different interactions with CD28 and play distinct roles in CD28-mediated costimulation. J Immunol 2006; 177: 1085–1091.

    Article  CAS  Google Scholar 

  50. Ji YR, Kim HJ, Yu DH, Bae KB, Park SJ, Yi JK et al. Enforced expression of roquin protein in T cells exacerbates the incidence and severity of experimental arthritis. J Biol Chem 2012; 287: 42269–42277.

    Article  CAS  Google Scholar 

  51. Ji YR, Kim HJ, Yu DH, Bae KB, Park SJ, Park SJ et al. Over-expression of Roquin aggravates T cell mediated hepatitis in transgenic mice using T cell specific promoter. Biochem Biophys Res Commun 2014; 452: 822–827.

    Article  CAS  Google Scholar 

  52. Bertossi A, Aichinger M, Sansonetti P, Lech M, Neff F, Pal M et al. Loss of Roquin induces early death and immune deregulation but not autoimmunity. J Exp Med 2011; 208: 1749–1756.

    Article  CAS  Google Scholar 

  53. Pratama A, Ramiscal RR, Silva DG, Das SK, Athanasopoulos V, Fitch J et al. Roquin-2 shares functions with its paralog Roquin-1 in the repression of mRNAs controlling T follicular helper cells and systemic inflammation. Immunity 2013; 38: 669–680.

    Article  CAS  Google Scholar 

  54. Schaefer JS, Montufar-Solis D, Klein JR . A role for IL-10 in the transcriptional regulation of Roquin-1. Gene 2014; 549: 134–140.

    Article  CAS  Google Scholar 

  55. Shen X, Hong F, Nguyen VA, Gao B . IL-10 attenuates IFN-alpha-activated STAT1 in the liver: involvement of SOCS2 and SOCS3. FEBS Lett 2000; 480: 132–136.

    Article  CAS  Google Scholar 

  56. Kim HJ, Barnitz RA, Kreslavsky T, Brown FD, Moffett H, Lemieux ME et al. Stable inhibitory activity of regulatory T cells requires the transcription factor Helios. Science 2015; 350: 334–339.

    Article  CAS  Google Scholar 

  57. Schaefer JS, Montufar-Solis D, Vigneswaran N, Klein JR . ICOS promotes IL-17 synthesis in colonic intraepithelial lymphocytes in IL-10-/- mice. J Leukoc Biol 2010; 87: 301–308.

    Article  CAS  Google Scholar 

  58. Cai G, Nie X, Zhang W, Wu B, Lin J, Wang H et al. A regulatory role for IL-10 receptor signaling in development and B cell help of T follicular helper cells in mice. J Immunol 2012; 189: 1294–1302.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J R Klein.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schaefer, J., Klein, J. Roquin—a multifunctional regulator of immune homeostasis. Genes Immun 17, 79–84 (2016). https://doi.org/10.1038/gene.2015.58

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/gene.2015.58

  • Springer Nature Limited

This article is cited by

Navigation