Skip to main content
Log in

A20-mediated negative regulation of canonical NF-κB signaling pathway

  • Immunology & Microbiology in Miami
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

The nuclear factor kappa B (NF-κB) plays vital role in the immune system by regulating innate and adaptive immunity, development and survival of lymphocytes, and lymphoid organogenesis. All known NF-κB activators converge on the IkappaB kinase (IKK) complex to activate the canonical and non-canonical NF-κB pathways. The IKK complex contains two catalytic subunits (IKKα and IKKβ) and a regulatory subunit NEMO/IKKγ that regulates the canonical NF-κB pathway, whereas IKKα regulates the non-canonical pathway. The process of IKKα activation and its role in the regulation of canonical NF-κB activation remain elusive. The canonical pathway is rapidly activated and produces a potent inflammatory response to bacterial and viral infections as well as different types of stress; however, uncontrolled NF-κB activation can lead to autoimmune diseases and cancers. Therefore, to keep the inflammatory response in check, elaborate negative regulatory mechanisms operate to terminate NF-κB activation at multiple levels by de novo synthesis of NF-κB inhibitory proteins, and orchestration of protein ubiquitination and deubiquitination. The NF-κB target genes, IκBα and A20, play critical roles in termination of the active canonical NF-κB pathway. In this review, we discuss our recent findings describing a novel function for IKKα in nucleating the ubiquitin-editing enzyme A20 complex, a major negative regulator of canonical NF-κB signaling. Consistently with an inhibitory function of IKKα, it is targeted by the human T-cell leukemia virus 1 (HTLV-1) oncoprotein, Tax, to prevent assembly of the A20 complex to maintain persistent NF-κB activation that promotes transformation and survival of virus-transformed cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Investig. 2005;115:1111–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  2. Takeuchi O, Akira S. Pattern recognition receptors and inflammation. Cell. 2010;140:805–20.

    Article  CAS  PubMed  Google Scholar 

  3. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132:344–62.

    Article  CAS  PubMed  Google Scholar 

  4. Hansen SK, Baeuerle PA, Blasi F. Purification, reconstitution, and I kappa B association of the c-Rel-p65 (RelA) complex, a strong activator of transcription. Mol Cell Biol. 1994;14:2593–603.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Bohuslav J, Kravchenko VV, Parry GC, Erlich JH, Gerondakis S, Mackman N, Ulevitch RJ. Regulation of an essential innate immune response by the p50 subunit of NF-kappaB. J Clin Investig. 1998;102:1645–52.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  6. Ishikawa H, Claudio E, Dambach D, Raventos-Suarez C, Ryan C, Bravo R. Chronic inflammation and susceptibility to bacterial infections in mice lacking the polypeptide (p)105 precursor (NF-kappaB1) but expressing p50. J Exp Med. 1998;187:985–96.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Gyrd-Hansen M, Meier P. IAPs: from caspase inhibitors to modulators of NF-kappaB, inflammation and cancer. Nat Rev Cancer. 2010;10:561–74.

    Article  CAS  PubMed  Google Scholar 

  8. Gilmore TD. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene. 2006;25:6680–4.

    Article  CAS  PubMed  Google Scholar 

  9. Karin M, Greten FR. NF-kappaB: linking inflammation and immunity to cancer development and progression. Nat Rev Immunol. 2005;5:749–59.

    Article  CAS  PubMed  Google Scholar 

  10. Chen L, Fischle W, Verdin E, Greene WC. Duration of nuclear NF-kappaB action regulated by reversible acetylation. Science. 2001;293:1653–7.

    Article  CAS  Google Scholar 

  11. Israel A. The IKK complex, a central regulator of NF-kappaB activation. Cold Spring Harb Perspect Biol. 2010;2:a000158.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Sun SC. Non-canonical NF-kappaB signaling pathway. Cell Res. 2011;21:71–85.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Solt LA, May MJ. The IkappaB kinase complex: master regulator of NF-kappaB signaling. Immunol Res. 2008;42:3–18.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Harhaj EW, Dixit VM. Regulation of NF-kappaB by deubiquitinases. Immunol Rev. 2012;246:107–24.

    Article  PubMed Central  PubMed  Google Scholar 

  15. Winston JT, Strack P, Beer-Romero P, Chu CY, Elledge SJ, Harper JW. The SCFbeta-TRCP-ubiquitin ligase complex associates specifically with phosphorylated destruction motifs in IkappaBalpha and beta-catenin and stimulates IkappaBalpha ubiquitination in vitro. Genes Dev. 1999;13:270–83.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Acconcia F, Sigismund S, Polo S. Ubiquitin in trafficking: the network at work. Exp Cell Res. 2009;315:1610–8.

    Article  CAS  PubMed  Google Scholar 

  17. Baud V, Karin M. Signal transduction by tumor necrosis factor and its relatives. Trends Cell Biol. 2001;11:372–7.

    Article  CAS  PubMed  Google Scholar 

  18. Sigismund S, Polo S, Di Fiore PP. Signaling through monoubiquitination. Curr Top Microbiol Immunol. 2004;286:149–85.

    CAS  PubMed  Google Scholar 

  19. Hershko A, Ciechanover A. The ubiquitin system. Annu Rev Biochem. 1998;67:425–79.

    Article  CAS  PubMed  Google Scholar 

  20. Pickart CM, Fushman D. Polyubiquitin chains: polymeric protein signals. Curr Opin Chem Biol. 2004;8:610–6.

    Article  CAS  PubMed  Google Scholar 

  21. Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S, Yamamoto M, Akira S, Takao T, Tanaka K, Iwai K. Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol. 2009;11:123–32.

    Article  CAS  PubMed  Google Scholar 

  22. Ikeda F, Dikic I. Atypical ubiquitin chains: new molecular signals. ‘Protein modifications: beyond the usual suspects’ review series. EMBO Rep. 2008;9:536–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  23. Matsumoto ML, Wickliffe KE, Dong KC, Yu C, Bosanac I, Bustos D, Phu L, Kirkpatrick DS, Hymowitz SG, Rape M, Kelley RF, Dixit VM. K11-linked polyubiquitination in cell cycle control revealed by a K11 linkage-specific antibody. Mol Cell. 2010;39:477–84.

    Article  CAS  PubMed  Google Scholar 

  24. Wertz IE, Dixit VM. Ubiquitin-mediated regulation of TNFR1 signaling. Cytokine Growth Factor Rev. 2008;19:313–24.

    Article  CAS  PubMed  Google Scholar 

  25. O’Donnell MA, Legarda-Addison D, Skountzos P, Yeh WC, Ting AT. Ubiquitination of RIP1 regulates an NF-kappaB-independent cell-death switch in TNF signaling. Curr Biol. 2007;17:418–24.

    Article  PubMed Central  PubMed  Google Scholar 

  26. Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A, Chiu YH, Deng L, Chen ZJ. TAB 2 and TAB 3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell. 2004;15:535–48.

    Article  CAS  PubMed  Google Scholar 

  27. Ea CK, Deng L, Xia ZP, Pineda G, Chen ZJ. Activation of IKK by TNFalpha requires site-specific ubiquitination of RIP1 and polyubiquitin binding by NEMO. Mol Cell. 2006;22:245–57.

    Article  CAS  PubMed  Google Scholar 

  28. O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol. 2007;7:353–64.

    Article  PubMed  Google Scholar 

  29. Akira S. Toll-like receptor signaling. J Biol Chem. 2003;278:38105–8.

    Article  CAS  PubMed  Google Scholar 

  30. Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee KY, Bussey C, Steckel M, Tanaka N, Yamada G, Akira S, Matsumoto K, Ghosh S. TAK1, but not TAB 1 or TAB 2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 2005;19:2668–81.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Jiang Z, Ninomiya-Tsuji J, Qian Y, Matsumoto K, Li X. Interleukin-1 (IL-1) receptor-associated kinase-dependent IL-1-induced signaling complexes phosphorylate TAK1 and TAB 2 at the plasma membrane and activate TAK1 in the cytosol. Mol Cell Biol. 2002;22:7158–67.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Shembade N, Harhaj EW. Regulation of NF-kappaB signaling by the A20 deubiquitinase. Cell Mol Immunol. 2012;9:123–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  33. Reiley W, Zhang M, Wu X, Granger E, Sun SC. Regulation of the deubiquitinating enzyme CYLD by IkappaB kinase gamma-dependent phosphorylation. Mol Cell Biol. 2005;25:3886–95.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Sun SC. Deubiquitylation and regulation of the immune response. Nat Rev Immunol. 2008;8:501–11.

    Article  CAS  PubMed  Google Scholar 

  35. Opipari A W Jr, Boguski MS, Dixit VM. The A20 cDNA induced by tumor necrosis factor alpha encodes a novel type of zinc finger protein. J Biol Chem. 1990;265:14705–8.

    CAS  PubMed  Google Scholar 

  36. Jaattela M, Mouritzen H, Elling F, Bastholm L. A20 zinc finger protein inhibits TNF and IL-1 signaling. J Immunol. 1996;156:1166–73.

    CAS  PubMed  Google Scholar 

  37. He KL, Ting AT. A20 inhibits tumor necrosis factor (TNF) alpha-induced apoptosis by disrupting recruitment of TRADD and RIP to the TNF receptor 1 complex in Jurkat T cells. Mol Cell Biol. 2002;22:6034–45.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  38. Sass G, Shembade ND, Haimerl F, Lamoureux N, Hashemolhosseini S, Tannapfel A, Tiegs G. TNF pretreatment interferes with mitochondrial apoptosis in the mouse liver by A20-mediated down-regulation of Bax. J Immunol. 2007;179:7042–9.

    Article  CAS  PubMed  Google Scholar 

  39. Lee EG, Boone DL, Chai S, Libby SL, Chien M, Lodolce JP, Ma A. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-deficient mice. Science. 2000;289:2350–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  40. Song HY, Rothe M, Goeddel DV. The tumor necrosis factor-inducible zinc finger protein A20 interacts with TRAF1/TRAF2 and inhibits NF-kappaB activation. Proc Natl Acad Sci USA. 1996;93:6721–5.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Heyninck K, De Valck D, Vanden Berghe W, Van Criekinge W, Contreras R, Fiers W, Haegeman G, Beyaert R. The zinc finger protein A20 inhibits TNF-induced NF-kappaB-dependent gene expression by interfering with an RIP- or TRAF2-mediated transactivation signal and directly binds to a novel NF-kappaB-inhibiting protein ABIN. J Cell Biol. 1999;145:1471–82.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Heyninck K, Beyaert R. The cytokine-inducible zinc finger protein A20 inhibits IL-1-induced NF-kappaB activation at the level of TRAF6. FEBS Lett. 1999;442:147–50.

    Article  CAS  PubMed  Google Scholar 

  43. Evans PC, Ovaa H, Hamon M, Kilshaw PJ, Hamm S, Bauer S, Ploegh HL, Smith TS. Zinc-finger protein A20, a regulator of inflammation and cell survival, has de-ubiquitinating activity. Biochem J. 2004;378:727–34.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  44. Wertz IE, O’Rourke KM, Zhou H, Eby M, Aravind L, Seshagiri S, Wu P, Wiesmann C, Baker R, Boone DL, Ma A, Koonin EV, Dixit VM. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-kappaB signalling. Nature. 2004;430:694–9.

    Article  CAS  PubMed  Google Scholar 

  45. De Valck D, Jin DY, Heyninck K, Van de Craen M, Contreras R, Fiers W, Jeang KT, Beyaert R. The zinc finger protein A20 interacts with a novel anti-apoptotic protein which is cleaved by specific caspases. Oncogene. 1999;18:4182–90.

    Article  PubMed  Google Scholar 

  46. Colland F, Jacq X, Trouplin V, Mougin C, Groizeleau C, Hamburger A, Meil A, Wojcik J, Legrain P, Gauthier JM. Functional proteomics mapping of a human signaling pathway. Genome Res. 2004;14:1324–32.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Shembade N, Harhaj NS, Liebl DJ, Harhaj EW. Essential role for TAX1BP1 in the termination of TNF-alpha-, IL-1- and LPS-mediated NF-kappaB and JNK signaling. EMBO J. 2007;26:3910–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  48. Shembade N, Harhaj NS, Parvatiyar K, Copeland NG, Jenkins NA, Matesic LE, Harhaj EW. The E3 ligase Itch negatively regulates inflammatory signaling pathways by controlling the function of the ubiquitin-editing enzyme A20. Nat Immunol. 2008;9:254–62.

    Article  CAS  PubMed  Google Scholar 

  49. Iha H, Peloponese JM, Verstrepen L, Zapart G, Ikeda F, Smith CD, Starost MF, Yedavalli V, Heyninck K, Dikic I, Beyaert R, Jeang KT. Inflammatory cardiac valvulitis in TAX1BP1-deficient mice through selective NF-kappaB activation. EMBO J. 2008;27:629–41.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Shembade N, Parvatiyar K, Harhaj NS, Harhaj EW. The ubiquitin-editing enzyme A20 requires RNF11 to downregulate NF-kappaB signalling. EMBO J. 2009;28:513–22.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  51. Komander D, Reyes-Turcu F, Licchesi JD, Odenwaelder P, Wilkinson KD, Barford D. Molecular discrimination of structurally equivalent Lys 63-linked and linear polyubiquitin chains. EMBO Rep. 2009;10:466–73.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  52. Shembade N, Ma A, Harhaj EW. Inhibition of NF-kappaB signaling by A20 through disruption of ubiquitin enzyme complexes. Science. 2010;327:1135–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  53. Matsuoka M. Human T-cell leukemia virus type I and adult T-cell leukemia. Oncogene. 2003;22:5131–40.

    Article  CAS  PubMed  Google Scholar 

  54. Shembade N, Harhaj NS, Yamamoto M, Akira S, Harhaj EW. The human T-cell leukemia virus type 1 Tax oncoprotein requires the ubiquitin-conjugating enzyme Ubc13 for NF-kappaB activation. J Virol. 2007;81:13735–42.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  55. Shembade N, Harhaj E. A20 inhibition of NFkappaB and inflammation: targeting E2:E3 ubiquitin enzyme complexes. Cell Cycle. 2010;9:2481–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  56. Shembade N, Pujari R, Harhaj NS, Abbott DW, Harhaj EW. The kinase IKKalpha inhibits activation of the transcription factor NF-kappaB by phosphorylating the regulatory molecule TAX1BP1. Nat Immunol. 2011;12:834–43.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Lawrence T, Bebien M, Liu GY, Nizet V, Karin M. IKKalpha limits macrophage NF-kappaB activation and contributes to the resolution of inflammation. Nature. 2005;434:1138–43.

    Article  CAS  PubMed  Google Scholar 

  58. Li Q, Lu Q, Bottero V, Estepa G, Morrison L, Mercurio F, Verma IM. Enhanced NF-kappaB activation and cellular function in macrophages lacking IkappaB kinase 1 (IKK1). Proc Natl Acad Sci USA. 2005;102:12425–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  59. Robek MD, Ratner L. Immortalization of CD4(+) and CD8(+) T lymphocytes by human T-cell leukemia virus type 1 Tax mutants expressed in a functional molecular clone. J Virol. 1999;73:4856–65.

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Sun SC, Yamaoka S. Activation of NF-kappaB by HTLV-I and implications for cell transformation. Oncogene. 2005;24:5952–64.

    Article  CAS  PubMed  Google Scholar 

  61. Gentle IE, Wong WW, Evans JM, Bankovacki A, Cook WD, Khan NR, Nachbur U, Rickard J, Anderton H, Moulin M, Lluis JM, Moujalled DM, Silke J, Vaux DL. In TNF-stimulated cells, RIPK1 promotes cell survival by stabilizing TRAF2 and cIAP1, which limits induction of non-canonical NF-kappaB and activation of caspase-8. J Biol Chem. 2011;286:13282–91.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  62. Kim JY, Morgan M, Kim DG, Lee JY, Bai L, Lin Y, Liu ZG, Kim YS. TNFalpha induced noncanonical NF-kappaB activation is attenuated by RIP1 through stabilization of TRAF2. J Cell Sci. 2011;124:647–56.

    Article  CAS  PubMed  Google Scholar 

  63. Kelliher MA, Grimm S, Ishida Y, Kuo F, Stanger BZ, Leder P. The death domain kinase RIP mediates the TNF-induced NF-kappaB signal. Immunity. 1998;8:297–303.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noula Shembade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pujari, R., Hunte, R., Khan, W.N. et al. A20-mediated negative regulation of canonical NF-κB signaling pathway. Immunol Res 57, 166–171 (2013). https://doi.org/10.1007/s12026-013-8463-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-013-8463-2

Keywords

Navigation