Skip to main content

Advertisement

Log in

Dendritic cells in cancer immunotherapy: vaccines or autologous transplants?

  • UNIVERSITY OF PITTSBURGH IMMUNOLOGY 2011
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Dendritic cells (DCs) are the most powerful immunostimulatory cells specialized in the induction and regulation of immune responses. Their properties and the feasibility of their large-scale ex vivo generation led to the application of ex vivo-educated DCs to bypass the dysfunction of endogenous DCs in cancer patients and to induce therapeutic anti-cancer immunity. While multiple paradigms of therapeutic application of DCs reflect their consideration as cancer “vaccines”, numerous features of DC-based vaccination resemble those of autologous transplants, resulting in challenges and opportunities that distinguish them from classical vaccines. In addition to the functional heterogeneity of DC subsets and plasticity of the individual DC types, the unique features of DCs are the kinetic character of their function, limited functional stability, and the possibility to imprint in maturing DCs distinct functions relevant for the induction of effective cancer immunity, such as the induction of different effector functions or different homing properties of tumor-specific T cells (delivery of “signal 3” and “signal 4”). These considerations highlight the importance of the application of optimized, potentially patient-specific conditions of ex vivo culture of DCs and their delivery, with the logistic and regulatory implications shared with transplantation and other surgical procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.

    PubMed  Google Scholar 

  2. Coley WB. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med. 1910;3(Surg Sect):1–48.

    Google Scholar 

  3. Nauts HC, Swift WE, Coley BL. The treatment of malignant tumors by bacterial toxins as developed by the late William B. Coley, M.D., reviewed in the light of modern research. Cancer Res. 1946;6:205–16.

    PubMed  CAS  Google Scholar 

  4. Wu Y, Rosenberg JE, Taplin ME. Novel agents and new therapeutics in castration-resistant prostate cancer. Curr Opin Oncol. 2011;23(3):290–6.

    PubMed  CAS  Google Scholar 

  5. Small EJ, Schellhammer PF, Higano CS, et al. Placebo-controlled phase III trial of immunologic therapy with sipuleucel-T (APC8015) in patients with metastatic, asymptomatic hormone refractory prostate cancer. J Clin Oncol. 2006;24(19):3089–94.

    PubMed  CAS  Google Scholar 

  6. Harzstark AL, Small EJ. Immunotherapy for prostate cancer using antigen-loaded antigen-presenting cells: APC8015 (Provenge). Expert Opin Biol Ther. 2007;7(8):1275–80.

    PubMed  CAS  Google Scholar 

  7. Rethinking therapeutic cancer vaccines. Nat Rev Drug Discov. 2009;8(9):685–6.

  8. Drake CG. Immunotherapy for prostate cancer: walk, don’t run. J Clin Oncol. 2009;27(25):4035–7.

    PubMed  CAS  Google Scholar 

  9. Higano CS, Schellhammer PF, Small EJ, et al. Integrated data from 2 randomized, double-blind, placebo-controlled, phase 3 trials of active cellular immunotherapy with sipuleucel-T in advanced prostate cancer. Cancer. 2009;115(16):3670–9.

    PubMed  CAS  Google Scholar 

  10. Lassi K, Dawson NA. Emerging therapies in castrate-resistant prostate cancer. Curr Opin Oncol. 2009;21(3):260–5.

    PubMed  CAS  Google Scholar 

  11. Nelson AL, Dhimolea E, Reichert JM. Development trends for human monoclonal antibody therapeutics. Nat Rev Drug Discov. 2010;9(10):767–74.

    PubMed  CAS  Google Scholar 

  12. Schlom J, Arlen PM, Gulley JL. Cancer vaccines: moving beyond current paradigms. Clin Cancer Res. 2007;13(13):3776–82.

    PubMed  CAS  Google Scholar 

  13. Bell D, Chomarat P, Broyles D, et al. In breast carcinoma tissue, immature dendritic cells reside within the tumor, whereas mature dendritic cells are located in peritumoral areas. J Exp Med. 1999;190(10):1417–26.

    PubMed  CAS  Google Scholar 

  14. Toriyama K, Wen DR, Paul E, Cochran AJ. Variations in the distribution, frequency, and phenotype of Langerhans cells during the evolution of malignant melanoma of the skin. J Invest Dermatol. 1993;100(3):269S–73S.

    PubMed  CAS  Google Scholar 

  15. Troy AJ, Summers KL, Davidson PJ, Atkinson CH, Hart DN. Minimal recruitment and activation of dendritic cells within renal cell carcinoma. Clin Cancer Res. 1998;4(3):585–93.

    PubMed  CAS  Google Scholar 

  16. Zou W, Machelon V, Coulomb-L’Hermin A, et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med. 2001;7(12):1339–46.

    PubMed  CAS  Google Scholar 

  17. Almand B, Resser JR, Lindman B, et al. Clinical significance of defective dendritic cell differentiation in cancer. Clin Cancer Res. 2000;6(5):1755–66.

    PubMed  CAS  Google Scholar 

  18. Della Bella S, Gennaro M, Vaccari M, et al. Altered maturation of peripheral blood dendritic cells in patients with breast cancer. Br J Cancer. 2003;89(8):1463–72.

    PubMed  CAS  Google Scholar 

  19. Shimizu K, Kurosawa Y, Taniguchi M, Steinman RM, Fujii S. Cross-presentation of glycolipid from tumor cells loaded with alpha-galactosylceramide leads to potent and long-lived T cell mediated immunity via dendritic cells. J Exp Med. 2007;204(11):2641–53.

    PubMed  CAS  Google Scholar 

  20. Steinman RM, Adams JC, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice IV. Identification and distribution in mouse spleen. J Exp Med. 1975;141(4):804–20.

    PubMed  CAS  Google Scholar 

  21. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J Exp Med. 1973;137(5):1142–62.

    PubMed  CAS  Google Scholar 

  22. Steinman RM, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. II. Functional properties in vitro. J Exp Med. 1974;139(2):380–97.

    PubMed  CAS  Google Scholar 

  23. Steinman RM, Lustig DS, Cohn ZA. Identification of a novel cell type in peripheral lymphoid organs of mice. 3. Functional properties in vivo. J Exp Med. 1974;139(6):1431–45.

    PubMed  CAS  Google Scholar 

  24. Fujii S, Shimizu K, Hemmi H, et al. Glycolipid alpha-C-galactosylceramide is a distinct inducer of dendritic cell function during innate and adaptive immune responses of mice. Proc Natl Acad Sci USA. 2006;103(30):11252–7.

    PubMed  CAS  Google Scholar 

  25. Kalinski P, Hilkens CM, Wierenga EA, Kapsenberg ML. T-cell priming by type-1 and type-2 polarized dendritic cells: the concept of a third signal. Immunol Today. 1999;20(12):561–7.

    PubMed  CAS  Google Scholar 

  26. Markowicz S, Engleman EG. Granulocyte-macrophage colony-stimulating factor promotes differentiation and survival of human peripheral blood dendritic cells in vitro. J Clin Invest. 1990;85(3):955–61.

    PubMed  CAS  Google Scholar 

  27. Sallusto F, Lanzavecchia A. Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med. 1994;179(4):1109–18.

    PubMed  CAS  Google Scholar 

  28. Caux C, Dezutter-Dambuyant C, Schmitt D, Banchereau J. GM-CSF and TNF-alpha cooperate in the generation of dendritic Langerhans cells. Nature. 1992;360(6401):258–61.

    PubMed  CAS  Google Scholar 

  29. Kalinski P, Schuitemaker JH, Hilkens CM, Wierenga EA, Kapsenberg ML. Final maturation of dendritic cells is associated with impaired responsiveness to IFN-gamma and to bacterial IL-12 inducers: decreased ability of mature dendritic cells to produce IL-12 during the interaction with Th cells. J Immunol. 1999;162(6):3231–6.

    PubMed  CAS  Google Scholar 

  30. Vieira PL, de Jong EC, Wierenga EA, Kapsenberg ML, Kalinski P. Development of Th1-inducing capacity in myeloid dendritic cells requires environmental instruction. J Immunol. 2000;164(9):4507–12.

    PubMed  CAS  Google Scholar 

  31. Kalinski P, Schuitemaker JH, Hilkens CM, Kapsenberg ML. Prostaglandin E2 induces the final maturation of IL-12-deficient CD1a + CD83 + dendritic cells: the levels of IL-12 are determined during the final dendritic cell maturation and are resistant to further modulation. J Immunol. 1998;161(6):2804–9.

    PubMed  CAS  Google Scholar 

  32. Nestle FO, Alijagic S, Gilliet M, et al. Vaccination of melanoma patients with peptide- or tumor lysate-pulsed dendritic cells. Nat Med. 1998;4(3):328–32.

    PubMed  CAS  Google Scholar 

  33. Nestle FO, Farkas A, Conrad C. Dendritic-cell-based therapeutic vaccination against cancer. Curr Opin Immunol. 2005;17(2):163–9.

    PubMed  CAS  Google Scholar 

  34. Engleman EG. Dendritic cells in the treatment of cancer. Biol Blood Marrow Transplant. 1996;2(3):115–7.

    PubMed  CAS  Google Scholar 

  35. Hsu FJ, Benike C, Fagnoni F, et al. Vaccination of patients with B-cell lymphoma using autologous antigen-pulsed dendritic cells. Nat Med. 1996;2(1):52–8.

    PubMed  CAS  Google Scholar 

  36. Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol. 2005;5(4):296–306.

    PubMed  CAS  Google Scholar 

  37. Blattman JN, Greenberg PD. Cancer immunotherapy: a treatment for the masses. Science. 2004;305(5681):200–5.

    PubMed  CAS  Google Scholar 

  38. Figdor CG, de Vries IJ, Lesterhuis WJ, Melief CJ. Dendritic cell immunotherapy: mapping the way. Nat Med. 2004;10(5):475–80.

    PubMed  CAS  Google Scholar 

  39. Gilboa E. The promise of cancer vaccines. Nat Rev Cancer. 2004;4(5):401–11.

    PubMed  CAS  Google Scholar 

  40. Rosenberg SA, Yang JC, Restifo NP. Cancer immunotherapy: moving beyond current vaccines. Nat Med. 2004;10(9):909–15.

    PubMed  CAS  Google Scholar 

  41. Srivastava PK. Therapeutic cancer vaccines. Curr Opin Immunol. 2006;18(2):201–5.

    PubMed  CAS  Google Scholar 

  42. Schlom J, Gulley JL, Arlen PM. Paradigm shifts in cancer vaccine therapy. Exp Biol Med (Maywood). 2008;233(5):522–34.

    CAS  Google Scholar 

  43. Patel PH, Kockler DR. Sipuleucel-T: a vaccine for metastatic, asymptomatic, androgen-independent prostate cancer. Ann Pharmacother. 2008;42(1):91–8.

    PubMed  Google Scholar 

  44. Pilla L, Patuzzo R, Rivoltini L, et al. A phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes Gp96, in combination with GM-CSF and interferon-alpha in metastatic melanoma patients. Cancer Immunol Immunother. 2006;55(8):958–68.

    PubMed  CAS  Google Scholar 

  45. Peoples GE, Holmes JP, Hueman MT, et al. Combined clinical trial results of a HER2/neu (E75) vaccine for the prevention of recurrence in high-risk breast cancer patients: U.S. Military Cancer Institute Clinical Trials Group Study I-01 and I-02. Clin Cancer Res. 2008;14(3):797–803.

    PubMed  CAS  Google Scholar 

  46. Okada H, Kalinski P, Ueda R, et al. Induction of CD8 + T-cell responses against novel glioma-associated antigen peptides and clinical activity by vaccinations with {alpha}-type 1 polarized dendritic cells and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in patients with recurrent malignant glioma. J Clin Oncol. 2011;29(3):330–6.

    PubMed  CAS  Google Scholar 

  47. Steinman RM, Banchereau J. Taking dendritic cells into medicine. Nature. 2007;449(7161):419–26.

    PubMed  CAS  Google Scholar 

  48. Mantovani A, Romero P, Palucka AK, Marincola FM. Tumour immunity: effector response to tumour and role of the microenvironment. Lancet. 2008;371(9614):771–83.

    PubMed  CAS  Google Scholar 

  49. Melief CJ. Cancer immunotherapy by dendritic cells. Immunity. 2008;29(3):372–83.

    PubMed  CAS  Google Scholar 

  50. Pearce EL, Shen H. Making sense of inflammation, epigenetics, and memory CD8 + T-cell differentiation in the context of infection. Immunol Rev. 2006;211:197–202.

    PubMed  CAS  Google Scholar 

  51. Cooper AM, Khader SA. The role of cytokines in the initiation, expansion, and control of cellular immunity to tuberculosis. Immunol Rev. 2008;226:191–204.

    PubMed  CAS  Google Scholar 

  52. Harty JT, Badovinac VP. Influence of effector molecules on the CD8(+) T cell response to infection. Curr Opin Immunol. 2002;14(3):360–5.

    PubMed  CAS  Google Scholar 

  53. van Leeuwen EM, Sprent J, Surh CD. Generation and maintenance of memory CD4(+) T Cells. Curr Opin Immunol. 2009;21(2):167–72.

    PubMed  Google Scholar 

  54. Haring JS, Badovinac VP, Harty JT. Inflaming the CD8 + T cell response. Immunity. 2006;25(1):19–29.

    PubMed  CAS  Google Scholar 

  55. Sallusto F, Geginat J, Lanzavecchia A. Central memory and effector memory T cell subsets: function, generation, and maintenance. Annu Rev Immunol. 2004;22:745–63.

    PubMed  CAS  Google Scholar 

  56. Sallusto F, Mackay CR, Lanzavecchia A. The role of chemokine receptors in primary, effector, and memory immune responses. Annu Rev Immunol. 2000;18:593–620.

    PubMed  CAS  Google Scholar 

  57. Hartl D, Krauss-Etschmann S, Koller B, et al. Infiltrated neutrophils acquire novel chemokine receptor expression and chemokine responsiveness in chronic inflammatory lung diseases. J Immunol. 2008;181(11):8053–67.

    PubMed  CAS  Google Scholar 

  58. Mantovani A, Allavena P, Sozzani S, Vecchi A, Locati M, Sica A. Chemokines in the recruitment and shaping of the leukocyte infiltrate of tumors. Semin Cancer Biol. 2004;14(3):155–60.

    PubMed  CAS  Google Scholar 

  59. Mrowietz U, Schwenk U, Maune S, et al. The chemokine RANTES is secreted by human melanoma cells and is associated with enhanced tumour formation in nude mice. Br J Cancer. 1999;79(7–8):1025–31.

    PubMed  CAS  Google Scholar 

  60. Payne AS, Cornelius LA. The role of chemokines in melanoma tumor growth and metastasis. J Invest Dermatol. 2002;118(6):915–22.

    PubMed  CAS  Google Scholar 

  61. Bonfil RD, Chinni S, Fridman R, Kim HR, Cher ML. Proteases, growth factors, chemokines, and the microenvironment in prostate cancer bone metastasis. Urol Oncol. 2007;25(5):407–11.

    PubMed  CAS  Google Scholar 

  62. Raman D, Baugher PJ, Thu YM, Richmond A. Role of chemokines in tumor growth. Cancer Lett. 2007;256(2):137–65.

    PubMed  CAS  Google Scholar 

  63. Walser TC, Fulton AM. The role of chemokines in the biology and therapy of breast cancer. Breast Dis. 2004;20:137–43.

    PubMed  CAS  Google Scholar 

  64. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol. 2006;6(4):295–307.

    PubMed  CAS  Google Scholar 

  65. Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9.

    PubMed  CAS  Google Scholar 

  66. Vieweg J, Su Z, Dahm P, Kusmartsev S. Reversal of tumor-mediated immunosuppression. Clin Cancer Res. 2007;13(2 Pt 2):727s–32s.

    PubMed  CAS  Google Scholar 

  67. Banerjee DK, Dhodapkar MV, Matayeva E, Steinman RM, Dhodapkar KM. Expansion of FOXP3high regulatory T cells by human dendritic cells (DCs) in vitro and after injection of cytokine-matured DCs in myeloma patients. Blood. 2006;108(8):2655–61.

    PubMed  CAS  Google Scholar 

  68. Rabinovich GA, Gabrilovich D, Sotomayor EM. Immunosuppressive strategies that are mediated by tumor cells. Annu Rev Immunol. 2007;25:267–96.

    PubMed  CAS  Google Scholar 

  69. Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat Rev Immunol. 2004;4(12):941–52.

    PubMed  CAS  Google Scholar 

  70. Gabrilovich D, Pisarev V. Tumor escape from immune response: mechanisms and targets of activity. Curr Drug Targets. 2003;4(7):525–36.

    PubMed  CAS  Google Scholar 

  71. Almand B, Clark JI, Nikitina E, et al. Increased production of immature myeloid cells in cancer patients: a mechanism of immunosuppression in cancer. J Immunol. 2001;166(1):678–89.

    PubMed  CAS  Google Scholar 

  72. Gabrilovich DI, Velders MP, Sotomayor EM, Kast WM. Mechanism of immune dysfunction in cancer mediated by immature Gr-1 + myeloid cells. J Immunol. 2001;166(9):5398–406.

    PubMed  CAS  Google Scholar 

  73. Young MR, Wright MA, Lozano Y, et al. Increased recurrence and metastasis in patients whose primary head and neck squamous cell carcinomas secreted granulocyte-macrophage colony-stimulating factor and contained CD34 + natural suppressor cells. Int J Cancer. 1997;74(1):69–74.

    PubMed  CAS  Google Scholar 

  74. Uchida K, Schneider S, Yochim JM, et al. Intratumoral COX-2 gene expression is a predictive factor for colorectal cancer response to fluoropyrimidine-based chemotherapy. Clin Cancer Res. 2005;11(9):3363–8.

    PubMed  CAS  Google Scholar 

  75. Williams C, Shattuck-Brandt RL, DuBois RN. The role of COX-2 in intestinal cancer. Ann N Y Acad Sci. 1999;889:72–83.

    PubMed  CAS  Google Scholar 

  76. Inaba T, Sano H, Kawahito Y, et al. Induction of cyclooxygenase-2 in monocyte/macrophage by mucins secreted from colon cancer cells. Proc Natl Acad Sci USA. 2003;100(5):2736–41.

    PubMed  CAS  Google Scholar 

  77. Soumaoro LT, Uetake H, Higuchi T, Takagi Y, Enomoto M, Sugihara K. Cyclooxygenase-2 expression: a significant prognostic indicator for patients with colorectal cancer. Clin Cancer Res. 2004;10(24):8465–71.

    PubMed  CAS  Google Scholar 

  78. Dannull J, Su Z, Rizzieri D, et al. Enhancement of vaccine-mediated antitumor immunity in cancer patients after depletion of regulatory T cells. J Clin Invest. 2005;115(12):3623–33.

    PubMed  CAS  Google Scholar 

  79. Yamazaki S, Inaba K, Tarbell KV, Steinman RM. Dendritic cells expand antigen-specific Foxp3 + CD25 + CD4 + regulatory T cells including suppressors of alloreactivity. Immunol Rev. 2006;212:314–29.

    PubMed  CAS  Google Scholar 

  80. Langenkamp A, Messi M, Lanzavecchia A, Sallusto F. Kinetics of dendritic cell activation: impact on priming of TH1, TH2 and nonpolarized T cells. Nat Immunol. 2000;1(4):311–6.

    PubMed  CAS  Google Scholar 

  81. Camporeale A, Boni A, Iezzi G, et al. Critical impact of the kinetics of dendritic cells activation on the in vivo induction of tumor-specific T lymphocytes. Cancer Res. 2003;63(13):3688–94.

    PubMed  CAS  Google Scholar 

  82. Watchmaker P, Berk E, Muthuswamy R, et al. Independent regulation of chemokine responsiveness and cytolytic function versus CD8 + T cell expansion by dendritic cells. J Immunol. 2010;184:591–7.

    PubMed  CAS  Google Scholar 

  83. Hermans IF, Ritchie DS, Yang J, Roberts JM, Ronchese F. CD8 + T cell-dependent elimination of dendritic cells in vivo limits the induction of antitumor immunity. J Immunol. 2000;164(6):3095–101.

    PubMed  CAS  Google Scholar 

  84. Ronchese F, Hermans IF. Killing of dendritic cells: a life cut short or a purposeful death? J Exp Med. 2001;194(5):F23–6.

    PubMed  CAS  Google Scholar 

  85. Yang J, Huck SP, McHugh RS, Hermans IF, Ronchese F. Perforin-dependent elimination of dendritic cells regulates the expansion of antigen-specific CD8 + T cells in vivo. Proc Natl Acad Sci USA. 2006;103(1):147–52.

    PubMed  CAS  Google Scholar 

  86. Nakamura Y, Watchmaker P, Urban J, et al. Helper function of memory CD8 + T cells: heterologous CD8 + T cells support the induction of therapeutic cancer immunity. Cancer Res. 2007;67(20):10012–8.

    PubMed  CAS  Google Scholar 

  87. Watchmaker P, Urban J, Berk E, et al. Memory CD8 + T cells protect dendritic cells from CTL killing. J Immunol. 2008;180:3857–65.

    PubMed  CAS  Google Scholar 

  88. Guarda G, Hons M, Soriano SF, et al. L-selectin-negative CCR7- effector and memory CD8 + T cells enter reactive lymph nodes and kill dendritic cells. Nat Immunol. 2007;8(7):743–52.

    PubMed  CAS  Google Scholar 

  89. De Vries IJ, Krooshoop DJ, Scharenborg NM, et al. Effective migration of antigen-pulsed dendritic cells to lymph nodes in melanoma patients is determined by their maturation state. Cancer Res. 2003;63(1):12–7.

    PubMed  Google Scholar 

  90. de Vries IJ, Lesterhuis WJ, Scharenborg NM, et al. Maturation of dendritic cells is a prerequisite for inducing immune responses in advanced melanoma patients. Clin Cancer Res. 2003;9(14):5091–100.

    PubMed  Google Scholar 

  91. Barratt-Boyes SM, Figdor CG. Current issues in delivering DCs for immunotherapy. Cytotherapy. 2004;6(2):105–10.

    PubMed  CAS  Google Scholar 

  92. Muthuswamy R, Mueller-Berghaus J, Haberkorn U, Reinhart TA, Schadendorf D, Kalinski P. PGE(2) transiently enhances DC expression of CCR7 but inhibits the ability of DCs to produce CCL19 and attract naive T cells. Blood. 2010;116(9):1454–9.

    PubMed  CAS  Google Scholar 

  93. Olszewski WL, Grzelak I, Ziolkowska A, Engeset A. Immune cell traffic from blood through the normal human skin to lymphatics. Clin Dermatol. 1995;13(5):473–83.

    PubMed  CAS  Google Scholar 

  94. Galkowska H, Olszewski WL. Immune events in skin. I. Spontaneous cluster formation of dendritic (veiled) cells and lymphocytes from skin lymph. Scand J Immunol. 1992;35(6):727–34.

    PubMed  CAS  Google Scholar 

  95. Yawalkar N, Brand CU, Braathen LR. IL-12 gene expression in human skin-derived CD1a + dendritic lymph cells. Arch Dermatol Res. 1996;288(2):79–84.

    PubMed  CAS  Google Scholar 

  96. Brand CU, Yawalkar N, Hunziker T, Braathen LR. Human skin lymph derived from irritant and allergic contact dermatitis: interleukin 10 is increased selectively in elicitation reactions. Dermatology. 1997;194(3):221–8.

    PubMed  CAS  Google Scholar 

  97. Hunger RE, Yawalkar N, Braathen LR, Brand CU. CD1a-positive dendritic cells transport the antigen DNCB intracellularly from the skin to the regional lymph nodes in the induction phase of allergic contact dermatitis. Arch Dermatol Res. 2001;293(8):420–6.

    PubMed  CAS  Google Scholar 

  98. Yawalkar N, Brand CU, Braathen LR. Interleukin-12 expression in human afferent lymph derived from the induction phase of allergic contact dermatitis. Br J Dermatol. 1998;138(2):297–300.

    PubMed  CAS  Google Scholar 

  99. LaSalle JM, Hafler DA. T cell anergy. FASEB J. 1994;8(9):601–8.

    PubMed  CAS  Google Scholar 

  100. Miller JF, Kurts C, Allison J, Kosaka H, Carbone F, Heath WR. Induction of peripheral CD8 + T-cell tolerance by cross-presentation of self antigens. Immunol Rev. 1998;165:267–77.

    PubMed  CAS  Google Scholar 

  101. Gett AV, Sallusto F, Lanzavecchia A, Geginat J. T cell fitness determined by signal strength. Nat Immunol. 2003;4(4):355–60.

    PubMed  CAS  Google Scholar 

  102. Iezzi G, Karjalainen K, Lanzavecchia A. The duration of antigenic stimulation determines the fate of naive and effector T cells. Immunity. 1998;8(1):89–95.

    PubMed  CAS  Google Scholar 

  103. Iezzi G, Scotet E, Scheidegger D, Lanzavecchia A. The interplay between the duration of TCR and cytokine signaling determines T cell polarization. Eur J Immunol. 1999;29(12):4092–101.

    PubMed  CAS  Google Scholar 

  104. Valitutti S, Dessing M, Aktories K, Gallati H, Lanzavecchia A. Sustained signaling leading to T cell activation results from prolonged T cell receptor occupancy. Role of T cell actin cytoskeleton. J Exp Med. 1995;181(2):577–84.

    PubMed  CAS  Google Scholar 

  105. Obst R, van Santen HM, Mathis D, Benoist C. Antigen persistence is required throughout the expansion phase of a CD4(+) T cell response. J Exp Med. 2005;201(10):1555–65.

    PubMed  CAS  Google Scholar 

  106. Jusforgues-Saklani H, Uhl M, Blachere N, et al. Antigen persistence is required for dendritic cell licensing and CD8 + T cell cross-priming. J Immunol. 2008;181(5):3067–76.

    PubMed  CAS  Google Scholar 

  107. Schijns VE. Induction and direction of immune responses by vaccine adjuvants. Crit Rev Immunol. 2001;21(1–3):75–85.

    PubMed  CAS  Google Scholar 

  108. Zhao Z, Leong KW. Controlled delivery of antigens and adjuvants in vaccine development. J Pharm Sci. 1996;85(12):1261–70.

    PubMed  CAS  Google Scholar 

  109. Kim TW, Hung CF, Ling M, et al. Enhancing DNA vaccine potency by coadministration of DNA encoding antiapoptotic proteins. J Clin Invest. 2003;112(1):109–17.

    PubMed  CAS  Google Scholar 

  110. Kang TH, Lee JH, Noh KH, et al. Enhancing dendritic cell vaccine potency by combining a BAK/BAX siRNA-mediated antiapoptotic strategy to prolong dendritic cell life with an intracellular strategy to target antigen to lysosomal compartments. Int J Cancer. 2007;120(8):1696–703.

    PubMed  CAS  Google Scholar 

  111. Peng S, Kim TW, Lee JH, et al. Vaccination with dendritic cells transfected with BAK and BAX siRNA enhances antigen-specific immune responses by prolonging dendritic cell life. Hum Gene Ther. 2005;16(5):584–93.

    PubMed  CAS  Google Scholar 

  112. Ozawa H, Ding W, Torii H, et al. Granulocyte-macrophage colony-stimulating factor gene transfer to dendritic cells or epidermal cells augments their antigen-presenting function including induction of anti-tumor immunity. J Invest Dermatol. 1999;113(6):999–1005.

    PubMed  CAS  Google Scholar 

  113. Arthur JF, Butterfield LH, Roth MD, et al. A comparison of gene transfer methods in human dendritic cells. Cancer Gene Ther. 1997;4(1):17–25.

    PubMed  CAS  Google Scholar 

  114. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392(6673):245–52.

    PubMed  CAS  Google Scholar 

  115. Schuler G, Schuler-Thurner B, Steinman RM. The use of dendritic cells in cancer immunotherapy. Curr Opin Immunol. 2003;15(2):138–47.

    PubMed  CAS  Google Scholar 

  116. Schuler G, Steinman RM. Dendritic cells as adjuvants for immune-mediated resistance to tumors. J Exp Med. 1997;186(8):1183–7.

    PubMed  CAS  Google Scholar 

  117. Kapsenberg ML. Dendritic-cell control of pathogen-driven T-cell polarization. Nat Rev Immunol. 2003;3(12):984–93.

    PubMed  CAS  Google Scholar 

  118. Ikeda H, Chamoto K, Tsuji T, et al. The critical role of type-1 innate and acquired immunity in tumor immunotherapy. Cancer Sci. 2004;95(9):697–703.

    PubMed  CAS  Google Scholar 

  119. Pulendran B. Modulating TH1/TH2 responses with microbes, dendritic cells, and pathogen recognition receptors. Immunol Res. 2004;29(1–3):187–96.

    PubMed  CAS  Google Scholar 

  120. Trinchieri G. Interleukin-12 and the regulation of innate resistance and adaptive immunity. Nat Rev Immunol. 2003;3(2):133–46.

    PubMed  CAS  Google Scholar 

  121. Palucka K, Banchereau J. How dendritic cells and microbes interact to elicit or subvert protective immune responses. Curr Opin Immunol. 2002;14(4):420–31.

    PubMed  CAS  Google Scholar 

  122. Czerniecki BJ, Cohen PA, Faries M, Xu S, Roros JG, Bedrosian I. Diverse functional activity of CD83 + monocyte-derived dendritic cells and the implications for cancer vaccines. Crit Rev Immunol. 2001;21(1–3):157–78.

    PubMed  CAS  Google Scholar 

  123. Kalinski P, Moser M. Consensual immunity: success-driven development of T-helper-1 and T-helper-2 responses. Nat Rev Immunol. 2005;5(3):251–60.

    PubMed  CAS  Google Scholar 

  124. Driessens G, Gordower L, Nuttin L, et al. Therapeutic efficacy of antitumor dendritic cell vaccinations correlates with persistent Th1 responses, high intratumor CD8 + T cell recruitment and low relative regulatory T cell infiltration. Cancer Immunol Immunother. 2008;57(12):1745–56.

    PubMed  CAS  Google Scholar 

  125. Kalinski P, Okada H. Polarized dendritic cells as cancer vaccines: directing effector-type T cells to tumors. Semin Immunol. 2010;22(3):173–82.

    PubMed  CAS  Google Scholar 

  126. Amigorena S, Savina A. Intracellular mechanisms of antigen cross presentation in dendritic cells. Curr Opin Immunol. 2010;22(1):109–17.

    PubMed  CAS  Google Scholar 

  127. Ma Y, Aymeric L, Locher C, Kroemer G, Zitvogel L. The dendritic cell-tumor cross-talk in cancer. Curr Opin Immunol. 2010;23(1):146–52.

    PubMed  Google Scholar 

  128. Vyas JM, Van der Veen AG, Ploegh HL. The known unknowns of antigen processing and presentation. Nat Rev Immunol. 2008;8(8):607–18.

    PubMed  CAS  Google Scholar 

  129. van der Bruggen P, Van den Eynde BJ. Processing and presentation of tumor antigens and vaccination strategies. Curr Opin Immunol. 2006;18(1):98–104.

    PubMed  Google Scholar 

  130. Amigorena S, Savina A. Intracellular mechanisms of antigen cross presentation in dendritic cells. Curr Opin Immunol;22 (1):109–17.

  131. Segura E, Villadangos JA. Antigen presentation by dendritic cells in vivo. Curr Opin Immunol. 2009;21(1):105–10.

    PubMed  CAS  Google Scholar 

  132. Shortman K, Heath WR. The CD8 + dendritic cell subset. Immunol Rev. 2010;234(1):18–31.

    PubMed  CAS  Google Scholar 

  133. Manfredi AA, Capobianco A, Bianchi ME, Rovere-Querini P. Regulation of dendritic- and T-cell fate by injury-associated endogenous signals. Crit Rev Immunol. 2009;29(1):69–86.

    PubMed  CAS  Google Scholar 

  134. Macagno A, Gilliet M, Sallusto F, Lanzavecchia A, Nestle FO, Groettrup M. Dendritic cells up-regulate immunoproteasomes and the proteasome regulator PA28 during maturation. Eur J Immunol. 1999;29(12):4037–42.

    PubMed  CAS  Google Scholar 

  135. Lanzavecchia A. Mechanisms of antigen uptake for presentation. Curr Opin Immunol. 1996;8(3):348–54.

    PubMed  CAS  Google Scholar 

  136. Sallusto F, Cella M, Danieli C, Lanzavecchia A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J Exp Med. 1995;182(2):389–400.

    PubMed  CAS  Google Scholar 

  137. Lopez-Albaitero A, Mailliard R, Hackman T, et al. Maturation pathways of dendritic cells determine TAP1 and TAP2 levels and cross-presenting function. J Immunother. 2009;32(5):465–73.

    PubMed  CAS  Google Scholar 

  138. Dhodapkar MV, Steinman RM, Sapp M, et al. Rapid generation of broad T-cell immunity in humans after a single injection of mature dendritic cells. J Clin Invest. 1999;104(2):173–80.

    PubMed  CAS  Google Scholar 

  139. Adema GJ, de Vries IJ, Punt CJ, Figdor CG. Migration of dendritic cell based cancer vaccines: in vivo veritas? Curr Opin Immunol. 2005;17(2):170–4.

    PubMed  CAS  Google Scholar 

  140. Bender A, Sapp M, Schuler G, Steinman RM, Bhardwaj N. Improved methods for the generation of dendritic cells from nonproliferating progenitors in human blood. J Immunol Methods. 1996;196(2):121–35.

    PubMed  CAS  Google Scholar 

  141. Reddy A, Sapp M, Feldman M, Subklewe M, Bhardwaj N. A monocyte conditioned medium is more effective than defined cytokines in mediating the terminal maturation of human dendritic cells. Blood. 1997;90(9):3640–6.

    PubMed  CAS  Google Scholar 

  142. Jonuleit H, Kuhn U, Muller G, et al. Pro-inflammatory cytokines and prostaglandins induce maturation of potent immunostimulatory dendritic cells under fetal calf serum-free conditions. Eur J Immunol. 1997;27(12):3135–42.

    PubMed  CAS  Google Scholar 

  143. Luft T, Jefford M, Luetjens P, et al. Functionally distinct dendritic cell (DC) populations induced by physiologic stimuli: prostaglandin E(2) regulates the migratory capacity of specific DC subsets. Blood. 2002;100(4):1362–72.

    PubMed  CAS  Google Scholar 

  144. Scandella E, Men Y, Gillessen S, Forster R, Groettrup M. Prostaglandin E2 is a key factor for CCR7 surface expression and migration of monocyte-derived dendritic cells. Blood. 2002;100(4):1354–61.

    PubMed  CAS  Google Scholar 

  145. Schadendorf D, Ugurel S, Schuler-Thurner B, et al. Dacarbazine (DTIC) versus vaccination with autologous peptide-pulsed dendritic cells (DC) in first-line treatment of patients with metastatic melanoma: a randomized phase III trial of the DC study group of the DeCOG. Ann Oncol. 2006;17(4):563–70.

    PubMed  CAS  Google Scholar 

  146. Kalinski P, Vieira PL, Schuitemaker JH, de Jong EC, Kapsenberg ML. Prostaglandin E(2) is a selective inducer of interleukin-12 p40 (IL-12p40) production and an inhibitor of bioactive IL-12p70 heterodimer. Blood. 2001;97(11):3466–9.

    PubMed  CAS  Google Scholar 

  147. Muthuswamy R, Urban J, Lee JJ, Reinhart TA, Bartlett D, Kalinski P. Ability of mature dendritic cells to interact with regulatory T cells is imprinted during maturation. Cancer Res. 2008;68(14):5972–8.

    PubMed  CAS  Google Scholar 

  148. Butterfield LH, Gooding W, Whiteside TL. Development of a potency assay for human dendritic cells: IL-12p70 production. J Immunother. 2008;31(1):89–100.

    PubMed  CAS  Google Scholar 

  149. DeBenedette MA, Calderhead DM, Tcherepanova IY, Nicolette CA, Healey DG. Potency of mature CD40L RNA electroporated dendritic cells correlates with IL-12 secretion by tracking multifunctional CD8(+)/CD28(+) cytotoxic T-cell responses in vitro. J Immunother. 2011;34(1):45–57.

    PubMed  CAS  Google Scholar 

  150. Zitvogel L, Mayordomo JI, Tjandrawan T, et al. Therapy of murine tumors with tumor peptide-pulsed dendritic cells: dependence on T cells, B7 costimulation, and T helper cell 1-associated cytokines. J Exp Med. 1996;183(1):87–97.

    PubMed  CAS  Google Scholar 

  151. Zitvogel L, Robbins PD, Storkus WJ, et al. Interleukin-12 and B7.1 co-stimulation cooperate in the induction of effective antitumor immunity and therapy of established tumors. Eur J Immunol. 1996;26(6):1335–41.

    PubMed  CAS  Google Scholar 

  152. Furumoto K, Arii S, Yamasaki S, et al. Spleen-derived dendritic cells engineered to enhance interleukin-12 production elicit therapeutic antitumor immune responses. Int J Cancer. 2000;87(5):665–72.

    PubMed  CAS  Google Scholar 

  153. Furumoto K, Mori A, Yamasaki S, et al. Interleukin-12-gene transduction makes DCs from tumor-bearing mice an effective inducer of tumor-specific immunity in a peritoneal dissemination model. Immunol Lett. 2002;83(1):13–20.

    PubMed  CAS  Google Scholar 

  154. Nishioka Y, Hirao M, Robbins PD, Lotze MT, Tahara H. Induction of systemic and therapeutic antitumor immunity using intratumoral injection of dendritic cells genetically modified to express interleukin 12. Cancer Res. 1999;59(16):4035–41.

    PubMed  CAS  Google Scholar 

  155. Okada N, Iiyama S, Okada Y, et al. Immunological properties and vaccine efficacy of murine dendritic cells simultaneously expressing melanoma-associated antigen and interleukin-12. Cancer Gene Ther. 2005;12(1):72–83.

    PubMed  CAS  Google Scholar 

  156. Redlinger RE Jr, Mailliard RB, Barksdale EM Jr. Advanced neuroblastoma impairs dendritic cell function in adoptive immunotherapy. J Pediatr Surg. 2003;38(6):857–62.

    PubMed  Google Scholar 

  157. Satoh Y, Esche C, Gambotto A, et al. Local administration of IL-12-transfected dendritic cells induces antitumor immune responses to colon adenocarcinoma in the liver in mice. J Exp Ther Oncol. 2002;2(6):337–49.

    PubMed  CAS  Google Scholar 

  158. Shimizu T, Berhanu A, Redlinger RE Jr, Watkins S, Lotze MT, Barksdale EM Jr. Interleukin-12 transduced dendritic cells induce regression of established murine neuroblastoma. J Pediatr Surg. 2001;36(8):1285–92.

    PubMed  CAS  Google Scholar 

  159. Yamanaka R, Zullo SA, Ramsey J, et al. Marked enhancement of antitumor immune responses in mouse brain tumor models by genetically modified dendritic cells producing Semliki Forest virus-mediated interleukin-12. J Neurosurg. 2002;97(3):611–8.

    PubMed  CAS  Google Scholar 

  160. Zhang S, Zeng G, Wilkes DS, et al. Dendritic cells transfected with interleukin-12 and pulsed with tumor extract inhibit growth of murine prostatic carcinoma in vivo. Prostate. 2003;55(4):292–8.

    PubMed  CAS  Google Scholar 

  161. Mailliard RB, Wankowicz-Kalinska A, Cai Q, et al. alpha-type-1 polarized dendritic cells: a novel immunization tool with optimized CTL-inducing activity. Cancer Res. 2004;64(17):5934–7.

    PubMed  CAS  Google Scholar 

  162. Kalinski P, Giermasz A, Nakamura Y, et al. Helper role of NK cells during the induction of anticancer responses by dendritic cells. Mol Immunol. 2005;42(4):535–9.

    PubMed  CAS  Google Scholar 

  163. Kalinski P, Mailliard RB, Giermasz A, et al. Natural killer-dendritic cell cross-talk in cancer immunotherapy. Expert Opin Biol Ther. 2005;5(10):1303–15.

    PubMed  CAS  Google Scholar 

  164. Mailliard RB, Egawa S, Cai Q, et al. Complementary dendritic cell-activating function of CD8 + and CD4 + T cells: helper role of CD8 + T cells in the development of T helper type 1 responses. J Exp Med. 2002;195(4):473–83.

    PubMed  CAS  Google Scholar 

  165. Mailliard RB, Son YI, Redlinger R, et al. Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function. J Immunol. 2003;171(5):2366–73.

    PubMed  CAS  Google Scholar 

  166. Xu S, Koski GK, Faries M, et al. Rapid high efficiency sensitization of CD8 + T cells to tumor antigens by dendritic cells leads to enhanced functional avidity and direct tumor recognition through an IL-12-dependent mechanism. J Immunol. 2003;171(5):2251–61.

    PubMed  CAS  Google Scholar 

  167. Wesa A, Kalinski P, Kirkwood JM, Tatsumi T, Storkus WJ. Polarized type-1 dendritic cells (DC1) producing high levels of IL-12 family members rescue patient TH1-type antimelanoma CD4 + T cell responses in vitro. J Immunother. 2007;30(1):75–82.

    PubMed  CAS  Google Scholar 

  168. Kalinski P, Nakamura Y, Watchmaker P, Giermasz A, Muthuswamy R, Mailliard RB. Helper roles of NK and CD8 + T cells in the induction of tumor immunity. Polarized dendritic cells as cancer vaccines. Immunol Res. 2006;36(1–3):137–46.

    PubMed  CAS  Google Scholar 

  169. Ten Brinke A, Karsten ML, Dieker MC, Zwaginga JJ, van Ham SM. The clinical grade maturation cocktail monophosphoryl lipid A plus IFNgamma generates monocyte-derived dendritic cells with the capacity to migrate and induce Th1 polarization. Vaccine. 2007;25(41):7145–52.

    PubMed  CAS  Google Scholar 

  170. Lee JJ, Foon KA, Mailliard RB, Muthuswamy R, Kalinski P. Type 1-polarized dendritic cells loaded with autologous tumor are a potent immunogen against chronic lymphocytic leukemia. J Leukoc Biol;2008.

  171. Wieckowski E, Chatta GS, Mailliard RM, et al. Type-1 polarized dendritic cells loaded with apoptotic prostate cancer cells are potent inducers of CD8(+) T cells against prostate cancer cells and defined prostate cancer-specific epitopes. Prostate. 2010;71(2):125–33.

    PubMed  Google Scholar 

  172. Gustafsson K, Ingelsten M, Bergqvist L, Nystrom J, Andersson B, Karlsson-Parra A. Recruitment and activation of natural killer cells in vitro by a human dendritic cell vaccine. Cancer Res. 2008;68(14):5965–71.

    PubMed  CAS  Google Scholar 

  173. Dubsky P, Saito H, Leogier M, et al. IL-15-induced human DC efficiently prime melanoma-specific naive CD8 + T cells to differentiate into CTL. Eur J Immunol. 2007;37(6):1678–90.

    PubMed  CAS  Google Scholar 

  174. Nguyen LT, Radhakrishnan S, Ciric B, et al. Cross-linking the B7 family molecule B7-DC directly activates immune functions of dendritic cells. J Exp Med. 2002;196(10):1393–8.

    PubMed  CAS  Google Scholar 

  175. Wang S, Yang J, Qian J, Wezeman M, Kwak LW, Yi Q. Tumor evasion of the immune system: inhibiting p38 MAPK signaling restores the function of dendritic cells in multiple myeloma. Blood. 2006;107(6):2432–9.

    PubMed  CAS  Google Scholar 

  176. Jarnicki AG, Conroy H, Brereton C, et al. Attenuating regulatory T cell induction by TLR agonists through inhibition of p38 MAPK signaling in dendritic cells enhances their efficacy as vaccine adjuvants and cancer immunotherapeutics. J Immunol. 2008;180(6):3797–806.

    PubMed  CAS  Google Scholar 

  177. Lipscomb MW, Chen L, Taylor JL, et al. Ectopic T-bet expression licenses dendritic cells for IL-12-independent priming of type 1 T cells in vitro. J Immunol. 2009;183:7250–8.

    PubMed  CAS  Google Scholar 

  178. Mora JR, Bono MR, Manjunath N, et al. Selective imprinting of gut-homing T cells by Peyer’s patch dendritic cells. Nature. 2003;424(6944):88–93.

    PubMed  CAS  Google Scholar 

  179. Mora JR, Cheng G, Picarella D, Briskin M, Buchanan N, von Andrian UH. Reciprocal and dynamic control of CD8 T cell homing by dendritic cells from skin- and gut-associated lymphoid tissues. J Exp Med. 2005;201(2):303–16.

    PubMed  CAS  Google Scholar 

  180. Mora JR, von Andrian UH. Retinoic acid: an educational “vitamin elixir” for gut-seeking T cells. Immunity. 2004;21(4):458–60.

    PubMed  CAS  Google Scholar 

  181. Schaerli P, Loetscher P, Moser B. Cutting edge: induction of follicular homing precedes effector Th cell development. J Immunol. 2001;167(11):6082–6.

    PubMed  CAS  Google Scholar 

  182. Stagg AJ, Kamm MA, Knight SC. Intestinal dendritic cells increase T cell expression of alpha4beta7 integrin. Eur J Immunol. 2002;32(5):1445–54.

    PubMed  CAS  Google Scholar 

  183. Weninger W, Manjunath N, von Andrian UH. Migration and differentiation of CD8 + T cells. Immunol Rev. 2002;186:221–33.

    PubMed  CAS  Google Scholar 

  184. Calzascia T, Masson F, Di Berardino-Besson W, et al. Homing phenotypes of tumor-specific CD8 T cells are predetermined at the tumor site by crosspresenting APCs. Immunity. 2005;22(2):175–84.

    PubMed  CAS  Google Scholar 

  185. Mattei S, Colombo MP, Melani C, Silvani A, Parmiani G, Herlyn M. Expression of cytokine/growth factors and their receptors in human melanoma and melanocytes. Int J Cancer. 1994;56(6):853–7.

    PubMed  CAS  Google Scholar 

  186. Kunz M, Toksoy A, Goebeler M, Engelhardt E, Brocker E, Gillitzer R. Strong expression of the lymphoattractant C-X-C chemokine Mig is associated with heavy infiltration of T cells in human malignant melanoma. J Pathol. 1999;189(4):552–8.

    PubMed  CAS  Google Scholar 

  187. Wenzel J, Bekisch B, Uerlich M, Haller O, Bieber T, Tuting T. Type I interferon-associated recruitment of cytotoxic lymphocytes: a common mechanism in regressive melanocytic lesions. Am J Clin Pathol. 2005;124(1):37–48.

    PubMed  CAS  Google Scholar 

  188. Mullins IM, Slingluff CL, Lee JK, et al. CXC chemokine receptor 3 expression by activated CD8 + T cells is associated with survival in melanoma patients with stage III disease. Cancer Res. 2004;64(21):7697–701.

    PubMed  CAS  Google Scholar 

  189. Tarbell KV, Petit L, Zuo X, et al. Dendritic cell-expanded, islet-specific CD4 + CD25 + CD62L + regulatory T cells restore normoglycemia in diabetic NOD mice. J Exp Med. 2007;204(1):191–201.

    PubMed  CAS  Google Scholar 

  190. Yamazaki S, Iyoda T, Tarbell K, et al. Direct expansion of functional CD25 + CD4 + regulatory T cells by antigen-processing dendritic cells. J Exp Med. 2003;198(2):235–47.

    PubMed  CAS  Google Scholar 

  191. Dhodapkar MV, Steinman RM. Antigen-bearing immature dendritic cells induce peptide-specific CD8(+) regulatory T cells in vivo in humans. Blood. 2002;100(1):174–7.

    PubMed  CAS  Google Scholar 

  192. de Vries IJ, Lesterhuis WJ, Barentsz JO, et al. Magnetic resonance tracking of dendritic cells in melanoma patients for monitoring of cellular therapy. Nat Biotechnol. 2005;23(11):1407–13.

    PubMed  Google Scholar 

  193. Mackensen A, Krause T, Blum U, Uhrmeister P, Mertelsmann R, Lindemann A. Homing of intravenously and intralymphatically injected human dendritic cells generated in vitro from CD34 + hematopoietic progenitor cells. Cancer Immunol Immunother. 1999;48(2–3):118–22.

    PubMed  CAS  Google Scholar 

  194. Fong L, Brockstedt D, Benike C, Wu L, Engleman EG. Dendritic cells injected via different routes induce immunity in cancer patients. J Immunol. 2001;166(6):4254–9.

    PubMed  CAS  Google Scholar 

  195. Grover A, Kim GJ, Lizee G, et al. Intralymphatic dendritic cell vaccination induces tumor antigen-specific, skin-homing T lymphocytes. Clin Cancer Res. 2006;12(19):5801–8.

    PubMed  CAS  Google Scholar 

  196. Bedrosian I, Mick R, Xu S, et al. Intranodal administration of peptide-pulsed mature dendritic cell vaccines results in superior CD8 + T-cell function in melanoma patients. J Clin Oncol. 2003;21(20):3826–35.

    PubMed  CAS  Google Scholar 

  197. Lesimple T, Neidhard EM, Vignard V, et al. Immunologic and clinical effects of injecting mature peptide-loaded dendritic cells by intralymphatic and intranodal routes in metastatic melanoma patients. Clin Cancer Res. 2006;12(24):7380–8.

    PubMed  CAS  Google Scholar 

  198. Freedman RS, Bowen JM, Delcos L, et al. Active intralymphatic immunotherapy of uterine cervical carcinoma with viral oncolysate: a pilot study. Int J Gynecol Cancer. 1994;4(2):101–10.

    PubMed  Google Scholar 

  199. Harrer T, Schwab J, Struff WG, et al. Intralymphatic interleukin-2 in combination with zidovudine for the therapy of patients with AIDS. Infection. 1998;26(6):368–74.

    PubMed  CAS  Google Scholar 

  200. Maloy KJ, Erdmann I, Basch V, et al. Intralymphatic immunization enhances DNA vaccination. Proc Natl Acad Sci USA. 2001;98(6):3299–303.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support by the NIH grants CA095128, CA114931, CA121973, CA137214 and CA138639, is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Kalinski.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kalinski, P., Edington, H., Zeh, H.J. et al. Dendritic cells in cancer immunotherapy: vaccines or autologous transplants?. Immunol Res 50, 235–247 (2011). https://doi.org/10.1007/s12026-011-8224-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-011-8224-z

Keywords

Navigation