Skip to main content

Advertisement

Log in

Biology and function of neuroimmune semaphorins 4A and 4D

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Semaphorins belong to a family of membrane-bound and secreted molecules that regulate the functional activity of axons in the nervous system. Sema4A and Sema4D were the first semaphorins also found to be expressed in immune cells and were, therefore, termed “immune semaphorins”. It is known that Sema4A has three functional receptors, namely Plexin D1, Plexin B1, and Tim-2, whereas Sema4D binds to Plexin B1 and CD72. Recent studies suggest that immune semaphorins play critical roles in many physiological and pathological processes and such. In this review, we summarize the current knowledge on the biology of neuroimmune semaphorins and their corresponding receptors, their distribution in organs and tissues, function in the immune response, and critical regulatory roles in various diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Kumanogoh A, Kikutani H. Immune semaphorins: a new area of semaphorin research. J Cell Sci. 2003;116:3463–70.

    Article  PubMed  CAS  Google Scholar 

  2. Yazdani U, Terman JR. The semaphorins. Genome Biol. 2006;7:211.

    Article  PubMed  Google Scholar 

  3. Suzuki K, Kumanogoh A, Kikutani H. Semaphorins and their receptors in immune cell interactions. Nat Immunol. 2008;9:17–23.

    Article  PubMed  CAS  Google Scholar 

  4. Koppel AM, Feiner L, Kobayashi H, Raper JA. A 70 amino acid region within the semaphorin domain activates specific cellular response of semaphorin family members. Neuron. 1997;19:531–7.

    Article  PubMed  CAS  Google Scholar 

  5. Gherardi E, Love CA, Esnouf RM, Jones EY. The sema domain. Curr Opin Struct Biol. 2004;14:669–78.

    Article  PubMed  CAS  Google Scholar 

  6. Bismuth G, Boumsell L. Controlling the immune system through semaphorins. Sci STKE. 2002;128:re4.

    Google Scholar 

  7. Kumanogoh A, Marukawa S, Suzuki K, Takegahara N, Watanabe C, Ch’ng E, Ishida I, Fujimura H, Sakoda S, Yoshida K, Kikutani H. Class IV semaphorin Sema4A enhances T-cell activation and interacts with Tim-2. Nature. 2002;419:629–33.

    Article  PubMed  CAS  Google Scholar 

  8. Puschel AW, Adams RH, Betz H. Murine semaphorin D/collapsin is a member of a diverse gene family and creates domains inhibitory for axonal extension. Neuron. 1995;14:941–8.

    Article  PubMed  CAS  Google Scholar 

  9. Toyofuku T, Yabuki M, Kamei J, Kamei M, Makino N, Kumanogoh A, Hori M. Semaphorin-4A, an activator for T-cell-mediated immunity, suppresses angiogenesis via Plexin-D1. EMBO J. 2007;26:1373–84.

    Article  PubMed  CAS  Google Scholar 

  10. Bougeret C, Mansur IG, Dastot H, Schmid M, Mahouy G, Bensussan A, Boumsell L. Increased surface expression of a newly identified 150-kDa dimer early after human T lymphocyte activation. J Immunol. 1992;148:318–23.

    PubMed  CAS  Google Scholar 

  11. Love CA, Harlos K, Mavaddat N, Davis SJ, Stuart DI, Jones EY, Esnouf RM. The ligand-binding face of the semaphorins revealed by the high-resolution crystal structure of SEMA4D. Nat Struct Biol. 2003;10:843–8.

    Article  PubMed  CAS  Google Scholar 

  12. Esnouf RM, Love CA, Harlos K, Stuart DI, Jones EY. Structure determination of human semaphorin 4D as an example of the use of MAD in non-optimal cases. Acta Crystallogr D Biol Crystallogr. 2006;62:108–15.

    Article  PubMed  Google Scholar 

  13. Furuyama T, Inagaki S, Kosugi A, Noda S, Saitoh S, Ogata M, Iwahashi Y, Miyazaki N, Hamaoka T, Tohyama M. Identification of a novel transmembrane semaphorin expressed on lymphocytes. J Biol Chem. 1996;271:33376–81.

    Article  PubMed  CAS  Google Scholar 

  14. Delaire S, Elhabazi A, Bensussan A, Boumsell L. CD100 is a leukocyte semaphorin. Cell Mol Life Sci. 1998;54:1265–76.

    Article  PubMed  CAS  Google Scholar 

  15. Kumanogoh A, Suzuki K, Ch’ng E, Watanabe C, Marukawa S, Takegahara N, Ishida I, Sato T, Habu S, Yoshida K, Shi W, Kikutani H. Requirement for the lymphocyte semaphorin, CD100, in the induction of antigen-specific T cells and the maturation of dendritic cells. J Immunol. 2002;169:1175–81.

    PubMed  CAS  Google Scholar 

  16. Chabbert-de Ponnat I, Marie-Cardine A, Pasterkamp RJ, Schiavon V, Tamagnone L, Thomasset N, Bensussan A, Boumsell L. Soluble CD100 functions on human monocytes and immature dendritic cells require plexin C1 and plexin B1, respectively. Int Immunol. 2005;17:439–47.

    Article  PubMed  CAS  Google Scholar 

  17. Hall KT, Boumsell L, Schultze JL, Boussiotis VA, Dorfman DM, Cardoso AA, Bensussan A, Nadler LM, Freeman GJ. Human CD100, a novel leukocyte semaphorin that promotes B-cell aggregation and differentiation. Proc Natl Acad Sci USA. 1996;93:11780–5.

    Article  PubMed  CAS  Google Scholar 

  18. Elhabazi A, Lang V, Hérold C, Freeman GJ, Bensussan A, Boumsell L, Bismuth G. The human semaphorin-like leukocyte cell surface molecule CD100 associates with a serine kinase activity. J Biol Chem. 1997;272:23515–20.

    Article  PubMed  CAS  Google Scholar 

  19. Sierra JR, Corso S, Caione L, Cepero V, Conrotto P, Cignetti A, Piacibello W, Kumanogoh A, Kikutani H, Comoglio PM, Tamagnone L, Giordano S. Tumor angiogenesis and progression are enhanced by Sema4D produced by tumor-associated macrophages. J Exp Med. 2008;205:1673–85.

    Article  PubMed  CAS  Google Scholar 

  20. Li M, O’Sullivan KM, Jones LK, Lo C, Semple T, Kumanogoh A, Kikutani H, Holdsworth SR, Kitching R. Endogenous CD100 promotes glomerular injury and macrophage recruitment in experimental crescentic glomerulonephritis. Immunology. 2009;128:114–22.

    Article  PubMed  CAS  Google Scholar 

  21. Okuno T, Nakatsuji Y, Moriya M, Takamatsu H, Nojima S, Takegahara N, Toyofuku T, Nakagawa Y, Kang S, Friedel RH, Sakoda S, Kikutani H, Kumanogoh A. Roles of Sema4D-plexin-B1 interactions in the central nervous system for pathogenesis of experimental autoimmune encephalomyelitis. J Immunol. 2010;184:1499–506.

    Article  PubMed  CAS  Google Scholar 

  22. Delaire S, Billard C, Tordjman R, Chédotal A, Elhabazi A, Bensussan A, Boumsell L. Biological activity of soluble CD100. II. Soluble CD100, similarly to H-SemaIII, inhibits immune cell migration. J Immunol. 2001;166:4348–54.

    PubMed  CAS  Google Scholar 

  23. Basile JR, Holmbeck K, Bugge TH, Gutkind JS. MT1-MMP controls tumor-induced angiogenesis through the release of semaphorin 4D. J Biol Chem. 2007;282:6899–905.

    Article  PubMed  CAS  Google Scholar 

  24. Elhabazi A, Delaire S, Bensussan A, Boumsell L, Bismuth G. Biological activity of soluble CD100. I. The extracellular region of CD100 is released from the surface of T lymphocytes by regulated proteolysis. J Immunol. 2001;166:4341–7.

    PubMed  CAS  Google Scholar 

  25. Herold C, Elhabazi A, Bismuth G, Bensussan A, Boumsell L. CD100 is associated with CD45 at the surface of human T lymphocytes. Role in T cell homotypic adhesion. J Immunol. 1996;157:5262–8.

    PubMed  CAS  Google Scholar 

  26. Takahashi T, Strittmatter SM. PlexinA1 autoinhibition by the plexin Sema domain. Neuron. 2001;29:429–39.

    Article  PubMed  CAS  Google Scholar 

  27. Chakravarti S, Sabatos CA, Xiao S, Illes Z, Cha EK, Sobel RA, Zheng XX, Strom TB, Kuchroo VK. Tim-2 regulates T helper type 2 responses and autoimmunity. J Exp Med. 2005;202:437–44.

    Article  PubMed  CAS  Google Scholar 

  28. Knickelbein JE, de Souza AJ, Tosti R, Narayan P, Kane LP. Cutting edge: inhibition of T cell activation by TIM-2. J Immunol. 2006;177:4966–70.

    PubMed  CAS  Google Scholar 

  29. van der Zwaag B, Hellemons AJ, Leenders WP, Burbach JP, Brunner HG, Padberg GW, Van Bokhoven H. PLEXIN-D1, a novel plexin family member, is expressed in vascular endothelium and the central nervous system during mouse embryogenesis. Dev Dyn. 2002;225:336–43.

    Article  PubMed  Google Scholar 

  30. Yukawa K, Tanaka T, Yoshida K, Takeuchi N, Ito T, Takamatsu H, Kikutani H, Kumanogoh A. Sema4A induces cell morphological changes through B-type plexin-mediated signaling. Int J Mol Med. 2010;25:225–30.

    PubMed  CAS  Google Scholar 

  31. Roodink I, Verrijp K, Raats J, Leenders WP. Plexin D1 is ubiquitously expressed on tumor vessels and tumor cells in solid malignancies. BMC Cancer. 2009;9:297.

    Article  PubMed  Google Scholar 

  32. Tong Y, Hota PK, Penachioni JY, Hamaneh MB, Kim S, Alviani RS, Shen L, He H, Tempel W, Tamagnone L, Park HW, Buck M. Structure and function of the intracellular region of the plexin-b1 transmembrane receptor. J Biol Chem. 2009;284:35962–72.

    Article  PubMed  CAS  Google Scholar 

  33. Kane LP. TIM family proteins and autoimmunity. Autoimmunity. 2007;40:405–8.

    Article  PubMed  CAS  Google Scholar 

  34. Santiago C, Ballesteros A, Tami C, Martínez-Muñoz L, Kaplan GG, Casasnovas JM. Structures of T cell immunoglobulin mucin receptors 1 and 2 reveal mechanisms for regulation of immune responses by the TIM receptor family. Immunity. 2007;26:299–310.

    Article  PubMed  CAS  Google Scholar 

  35. Kuchroo VK, Dardalhon V, Xiao S, Anderson AC. New roles for TIM family members in immune regulation. Nat Rev Immunol. 2008;8:577–80.

    Article  PubMed  CAS  Google Scholar 

  36. Chen TT, Li L, Chung DH, Allen CD, Torti SV, Torti FM, Cyster JG, Chen CY, Brodsky FM, Niemi EC, Nakamura MC, Seaman WE, Daws MR. TIM-2 is expressed on B cells and in liver and kidney and is a receptor for H-ferritin endocytosis. J Exp Med. 2005;202:955–65.

    Article  PubMed  CAS  Google Scholar 

  37. Maestrini E, Tamagnone L, Longati P, Cremona O, Gulisano M, Bione S, Tamanini F, Neel BG, Toniolo D, Comoglio PM. A family of transmembrane proteins with homology to the MET-hepatocyte growth factor receptor. Proc Natl Acad Sci USA. 1996;93:674–8.

    Article  PubMed  CAS  Google Scholar 

  38. Moreau-Fauvarque C, Kumanogoh A, Camand E, Jaillard C, Barbin G, Boquet I, Love C, Jones EY, Kikutani H, Lubetzki C, Dusart I, Chédotal A. The transmembrane semaphorin Sema4D/CD100, an inhibitor of axonal growth, is expressed on oligodendrocytes and upregulated after CNS lesion. J Neurosci. 2003;23:9229–39.

    PubMed  CAS  Google Scholar 

  39. Gómez-Román JJ, Nicolas Martínez M, Lazuén Fernández S, Val-Bernal JF. PLXNB1 (plexin B1). Atlas Genet Cytogenet Oncol Haematol. 2010;3:416–22.

    Google Scholar 

  40. Tamagnone L, Artigiani S, Chen H, He Z, Ming GI, Song H, Chedotal A, Winberg ML, Goodman CS, Poo M, Tessier-Lavigne M, Comoglio PM. Plexins are a large family of receptors for transmembrane, secreted, and GPI-anchored semaphorins in vertebrates. Cell. 1999;99:71–80.

    Article  PubMed  CAS  Google Scholar 

  41. Artigiani S, Barberis D, Fazzari P, Longati P, Angelini P, van de Loo J-W, Comoglio PM, Tamagnone L. Functional regulation of semaphorin receptors by proprotein convertases. J Biol Chem. 2003;278:10094–101.

    Article  PubMed  CAS  Google Scholar 

  42. Fazzari P, Penachioni J, Gianola S, Rossi F, Eickholt BJ, Maina F, Alexopoulou L, Sottile A, Comoglio PM, Flavell RA, Tamagnone L. Plexin-B1 plays a redundant role during mouse development and in tumor angiogenesis. BMC Dev Biol. 2007;7:55.

    Article  PubMed  Google Scholar 

  43. Basile JR, Barac A, Zhu T, Guan KL, Gutkind JS. Class IV semaphorins promote angiogenesis by stimulating Rho-initiated pathways through plexin-B. Cancer Res. 2004;64:5212–24.

    Article  PubMed  CAS  Google Scholar 

  44. Granziero L, Circosta P, Scielzo C, Frisaldi E, Stella S, Geuna M, Giordano S, Ghia P, Caligaris-Cappio F. CD100/Plexin-B1 interactions sustain proliferation and survival of normal and leukemic CD5 + B lymphocytes. Blood. 2003;101:1962–9.

    Article  PubMed  CAS  Google Scholar 

  45. Parnes JR, Pan C. CD72, a negative regulator of B-cell responsiveness. Immunol Rev. 2000;176:75–85.

    Article  PubMed  CAS  Google Scholar 

  46. Adachi T, Wakabayashi C, Nakayama T, Yakura H, Tsubata T. CD72 negatively regulates signaling through the antigen receptor of B cells. J Immunol. 2000;164:1223–9.

    PubMed  CAS  Google Scholar 

  47. Kumanogoh A, Watanabe C, Lee I, Wang X, Shi W, Araki H, Hirata H, Iwahori K, Uchida J, Yasui T, Matsumoto M, Yoshida K, Yakura H, Pan C, Parnes JR, Kikutani H. Identification of CD72 as a lymphocyte receptor for the class IV semaphorin CD100: a novel mechanism for regulating B cell signaling. Immunity. 2000;13:621–31.

    Article  PubMed  CAS  Google Scholar 

  48. Robinson WH, Landolfi MM, Schafer H, Parnes JR. Biochemical identity of the mouse Ly-19.2 and Ly-32.2 alloantigens with the B cell differentiated antigen Lyb-2/CD72. J Immunol. 1993;151:4764–72.

    PubMed  CAS  Google Scholar 

  49. Ishida I, Kumanogoh A, Suzuki K, Akahani S, Noda K, Kikutani H. Involvement of CD100, a lymphocyte semaphorin, in the activation of the human immune system via CD72: implications for the regulation of immune and inflammatory responses. Int Immunol. 2003;15:1027–34.

    Article  PubMed  CAS  Google Scholar 

  50. Wu HJ, Venkataraman C, Estus S, Dong C, Davis RJ, Flavell RA, Bondada S. Positive signaling through CD72 induces mitogen-activated protein kinase activation and synergizes with B cell receptor signals to induce X-linked immunodeficiency B cell proliferation. J Immunol. 2001;167:1263–73.

    PubMed  CAS  Google Scholar 

  51. Ogimoto M, Ichinowatari G, Watanabe N, Tada N, Mizuno K, Yakura H. Impairment of B cell receptor-mediated Ca2+ influx, activation of mitogen-activated protein kinases and growth inhibition in CD72-deficient BAL-17 cells. Int Immunol. 2004;16:971–82.

    Article  PubMed  CAS  Google Scholar 

  52. Fusaki N, Tomita S, Wu Y, Okamoto N, Goisuka R, Kitamura D, Hozumi N. BLNK is associated with the CD72/SHP-1/Grb2 complex in the WEHI231 cell line after membrane IgM cross-linking. Eur J Immunol. 2000;30:1326–30.

    Article  PubMed  CAS  Google Scholar 

  53. Shi W, Kumanogoh A, Watanabe C, et al. The class IV semaphorin CD100 plays nonredundant roles in the immune system: defective B and T cell activation in CD100-deficient mice. Immunity. 2000;13:633–42.

    Article  PubMed  CAS  Google Scholar 

  54. Herold C, Bismuth G, Bensussan A, Boumsell L. Activation signals are delivered through two distinct epitopes of CD100, a unique 150 kDa human lymphocyte surface structure previously defined by BB18 mAb. Int Immunol. 1995;7:1–8.

    Article  PubMed  CAS  Google Scholar 

  55. Yu HH, Araj HH, Ralls SA, Kolodkin AL. The transmembrane Semaphorin Sema I is required in Drosophila for embryonic motor and CNS axon guidance. Neuron. 1998;20:207–20.

    Article  PubMed  CAS  Google Scholar 

  56. Conrotto P, Valdembri D, Corso S, Serini G, Tamagnone L, Comoglio PM, Bussolino F, Giordano S. Sema4D induces angiogenesis through Met recruitment by Plexin B1. Blood. 2005;105:4321–9.

    Article  PubMed  CAS  Google Scholar 

  57. Gu C, Yoshida Y, Livet J, et al. Semaphorin 3E and plexin-D1 control vascular pattern independently of neuropilins. Science. 2005;307:265–8.

    Article  PubMed  CAS  Google Scholar 

  58. Kitsukawa T, Shimono A, Kawakami A, Kondoh H, Fujisawa H. Overexpression of a membrane protein, neuropilin, in chimeric mice causes anomalies in the cardiovascular system, nervous system and limbs. Development. 1995;121:4309–18.

    PubMed  CAS  Google Scholar 

  59. Behar O, Golden JA, Mashimo H, Schoen FJ, Fishman MC. Semaphorin III is needed for normal patterning and growth of nerves, bones and heart. Nature. 1996;383:525–8.

    Article  PubMed  CAS  Google Scholar 

  60. Kumanogoh A, Kikutani H. The CD100-CD72 interaction: a novel mechanism of immune regulation. Trends Immunol. 2001;22:670–6.

    Article  PubMed  CAS  Google Scholar 

  61. Sekido Y, Bader S, Latif F, Chen JY, Duh FM, Wei MH, Albanesi JP, Lee CC, Lerman MI, Minna JD. Human semaphorins A(V) and IV reside in the 3p21.3 small cell lung cancer deletion region and demonstrate distinct expression patterns. Proc Natl Acad Sci USA. 1996;93:4120–5.

    Article  PubMed  CAS  Google Scholar 

  62. Chapoval SP, Smith E, Beasley K, DeTolla LJ, Keegan AD. Semaphorin 4A downregulates allergic airway inflammation. Int Immunol. 2010;22(Suppl. 1):v17.

    Google Scholar 

  63. Kikutani H. Semaphorins in immune cell communication. Int Immunol. 2010;22(Suppl. 1):v4.

    Google Scholar 

  64. Chapoval SP, David CS. Identification of antigenic epitopes on human allergens: studies with HLA transgenic mice. Environ Health Perspect. 2003;111:245–50.

    Article  PubMed  CAS  Google Scholar 

  65. Horny HP, Sotlar K, Valent P. Mastocytosis: state of the art. Pathobiology. 2007;74:121–32.

    Article  PubMed  CAS  Google Scholar 

  66. Li L, Yao Z. Mast cell and immune inhibitory receptors. Cell Mol Immunol. 2004;1:408–15.

    PubMed  CAS  Google Scholar 

  67. Unkeless JC, Jin J. Inhibitory receptors, ITIM sequences and phosphatases. Curr Opin Immunol. 1997;9:338–43.

    Article  PubMed  CAS  Google Scholar 

  68. Kataoka TR, Kumanogoh A, Bandara G, Metcalfe DD, Gilfillan AM. CD72 negatively regulates KIT-mediated responses in human mast cells. J Immunol. 2010;184:2468–75.

    Article  PubMed  CAS  Google Scholar 

  69. Giordano S, Corso S, Conrotto P, Artigiani S, Gilestro G, Barberis D, Tamagnone L, Comoglio PM. Semaphorin 4D receptor controls invasive growth by coupling with Met tyrosine kinase. Nat Cell Biol. 2002;4:720–4.

    Article  PubMed  CAS  Google Scholar 

  70. Basile JR, Castilho RM, Williams VP, Gutkind JS. Semaphorin 4D provides a link between axon guidance processes and tumor-induced angiogenesis. Proc Natl Acad Sci USA. 2006;103:9017–22.

    Article  PubMed  CAS  Google Scholar 

  71. Dorfman DM, Shahsafaei A, Nadler LM, Freeman GJ. The leukocyte semaphorin CD100 is expressed in most T-cell, but few B-cell, non-Hodgkin’s lymphomas. Am J Pathol. 1998;153:255–62.

    Article  PubMed  CAS  Google Scholar 

  72. Blauwet LA, Cooper LT. Myocarditis. Prog Cardiovasc Dis. 2010;52:274–88.

    Article  PubMed  Google Scholar 

  73. Makino N, Toyofuku T, Takegahara N, Takamatsu H, Okuno T, Nakagawa Y, Kang S, Nojima S, Hori M, Kikutani H, Kumanogoh A. Involvement of Sema4A in the progression of experimental autoimmune myocarditis. FEBS Lett. 2008;582:3935–40.

    Article  PubMed  CAS  Google Scholar 

  74. Moreno PR, Purushothaman KR, Sirol M, Levy AP, Fuster V. Neovascularization in human atherosclerosis. Circulation. 2006;113:2245–52.

    Article  PubMed  Google Scholar 

  75. Yukawa K, Tanaka T, Kishino M, Yoshida K, Takeuchi N, Ito T, Takamatsu H, Kikutani H, Kumanogoh A. Deletion of Sema4D gene reduces intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Int J Mol Med. 2010;26:39–44.

    Article  PubMed  Google Scholar 

  76. Celletti FL, Waugh JM, Amabile PG, Brendolan A, Hilfiker PR, Dake MD. Vascular endothelial growth factor enhances atherosclerotic plaque progression. Nat Med. 2001;7:425–9.

    Article  PubMed  CAS  Google Scholar 

  77. Zhu L, Bergmeier W, Wu J, Jiang H, Stalker TJ, Cieslak M, Fan R, Boumsell L, Kumanogoh A, Kikutani H, Tamagnone L, Wagner DD, Milla ME, Brass LF. Regulated surface expression and shedding support a dual role for semaphorin 4D in platelet responses to vascular injury. Proc Natl Acad Sci USA. 2007;104:1621–6.

    Article  PubMed  Google Scholar 

  78. Zhu L, Stalker TJ, Fong KP, Jiang H, Tran A, Crichton I, Lee EK, Neeves KB, Maloney SF, Kikutani H, Kumanogoh A, Pure E, Diamond SL, Brass LF. Disruption of SEMA4D ameliorates platelet hypersensitivity in dyslipidemia and confers protection against the development of atherosclerosis. Arterioscler Thromb Vasc Biol. 2009;29:1039–45.

    Article  PubMed  CAS  Google Scholar 

  79. Li M, O’Sullivan KM, Jones LK, Semple T, Kumanogoh A, Kikutani H, Holdsworth SR, Kitching AR. CD100 enhances dendritic cell and CD4 + cell activation leading to pathogenetic humoral responses and immune complex glomerulonephritis. J Immunol. 2006;177:3406–12.

    PubMed  CAS  Google Scholar 

  80. Reinhardt RL, Bullard DC, Weaver CT, Jenkins MK. Preferential accumulation of antigen-specific effector CD4 T cells at an antigen injection site involves CD62E-dependent migration but not local proliferation. J Exp Med. 2003;197:751–62.

    Article  PubMed  CAS  Google Scholar 

  81. Kumanogoh A, Shikina T, Suzuki K, Uematsu S, Yukawa K, Kashiwamura S, Tsutsui H, Yamamoto M, Takamatsu H, Ko-Mitamura EP, Takegahara N, Marukawa S, Ishida I, Morishita H, Prasad DV, Tamura M, Mizui M, Toyofuku T, Akira S, Takeda K, Okabe M, Kikutani H. Nonredundant roles of Sema4A in the immune system: defective T cell priming and Th1/Th2 regulation in Sema4A-deficient mice. Immunity. 2005;22:305–16.

    Article  PubMed  CAS  Google Scholar 

  82. Izmailova E, Bertley FM, Huang Q, Makori N, Miller CJ, Young RA, Aldovini A. HIV-1 Tat reprograms immature dendritic cells to express chemoattractants for activated T cells and macrophages. Nat Med. 2003;9:191–7.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R21AI076736 to S.P.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Svetlana P. Chapoval.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nkyimbeng-Takwi, E., Chapoval, S.P. Biology and function of neuroimmune semaphorins 4A and 4D. Immunol Res 50, 10–21 (2011). https://doi.org/10.1007/s12026-010-8201-y

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-010-8201-y

Keywords

Navigation