Skip to main content

Advertisement

Log in

Strategies to enhance rituximab anti-tumor activity in the treatment of CD20-positive B-cell neoplasms

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Rituximab is a chimeric monoclonal anti-CD20 antibody and was the first monoclonal antibody (mAb) therapy approved by FDA (Food and Drug Administration) for the treatment of B-cell lymphoma. It has revolutionized the treatment of patients with CD20-positive non-Hodgkin’s lymphoma and CLL. Rituximab is currently being used in virtually all patients with B-cell lymphomas either alone or in combination with chemotherapy. Despite its excellent safety and efficacy profile, only a small portion of B-cell lymphoma patients treated with rituximab as a single agent have sustained complete remissions. Combining rituximab with standard chemotherapy regimens is associated with higher response rates, and improved survival in a subset of patients. Unfortunately, a significant percentage of patients who initially respond to rituximab eventually relapse, and there are patients that demonstrate intrinsic resistance to initial therapy. In the last decade, ongoing scientific research has led to a better understanding of rituximab-associated cytotoxic mechanisms against lymphoma target cells. Scientific efforts are increasingly being focused in developing new strategies to improve mAb activity. Various strategies include the following: combining rituximab with different biologic agents (e.g. cytokines, immunomodulatory drugs); developing novel antibody constructs (including bi-specific antibodies); and/or inhibiting signaling pathways associated with lymphomagenesis and immuno-chemotherapy resistance. In this review article, we will provide an overview of various rituximab-associated cytotoxic mechanisms and novel strategies to improve mAb activity against B-cell lymphoma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Jemal A, Seigel R, Ward E, et al. Cancer statistics 2009. CA Cancer J Clin. 2009;59:225–49.

    Article  PubMed  Google Scholar 

  2. Armitage JO, Weisenburger DD. New approach to classifying non-Hodgkin’s lymphoma. Clinical features of major subtypes. J Clin Oncol. 1998;16:2780–95.

    PubMed  CAS  Google Scholar 

  3. Druker BJ, Lydon NB. Lessons learned from the development of an abl tyrosinekinase inhibitor for chronic myelogenous leukemia. J Clin Invest. 2000;105:3–7.

    Article  PubMed  CAS  Google Scholar 

  4. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature. 1975;256:495–7.

    Article  PubMed  CAS  Google Scholar 

  5. Barinaga M. From bench top to bedside. Science. 1997;278:1036–9.

    Article  PubMed  CAS  Google Scholar 

  6. Morrison SL, Johnson MJ, Herzenberg LA. Chimeric human antibody molecules: mouse antigen-binding domain human constant region domain. Proc Natl Acad Sci USA. 1984;81:6581–855.

    Article  Google Scholar 

  7. Slamon DJ, Leyland-Jones B, Shak S, et al. Use of chemotherapy plus a monoclonal antibody against HER2 for metastatic breast cancer that over expresses HER2. N Engl J Med. 2001;344:783–92.

    Article  PubMed  CAS  Google Scholar 

  8. Bertram HC, Check IJ, Milano MA. Immunophenotyping large B-cell lymphomas. Flow cytometric pitfalls and pathologic correlation. Am J Clin Path. 2001;116:191–203.

    Article  PubMed  CAS  Google Scholar 

  9. Cheson BD, Leonard JP. Monoclonal antibody therapy for B-cell non-Hodgkin’s lymphoma. N Engl J Med. 2008;359:613–26.

    Article  PubMed  CAS  Google Scholar 

  10. McLaughlin P, Grillo-Lopez AJ, Link BK, et al. Chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a 4-dose, 22-day treatment program. J Clin Oncol. 1998;16:2825–33.

    PubMed  CAS  Google Scholar 

  11. Piro LD, White CA, Grillo-Lopez AJ, et al. Extended Rituximab (anti-CD20 monoclonal antibody) therapy for relapsed or refractory low-grade or follicular non-Hodgkin’s lymphoma. Ann Oncol. 1999;10:655–61.

    Article  PubMed  CAS  Google Scholar 

  12. Czuczman MS, Grillo-Lopez AJ, White CA, et al. The treatment of patients with low-Grade B-cell lymphoma with the combination of chimeric anti-CD20 monoclonal antibody (Rituxan, Rituximab) and CHOP chemotherapy. J Clin Oncol. 1999;17:268–76.

    PubMed  CAS  Google Scholar 

  13. Coiffier B, Lepage E, Briere J, et al. CHOP chemotherapy plus rituximab compared with CHOP alone in elderly patients with diffuse large B-cell lymphoma. N Engl J Med. 2002;346:235–42.

    Article  PubMed  CAS  Google Scholar 

  14. Czuczman MS, Weaver R, Alkuzweny B, et al. Prolonged clinical and molecular remission in patients with low-grade or follicular non-Hodgkin’s lymphoma treated with rituximab plus CHOP chemotherapy: 9-year follow-up. J Clin Oncol. 2004;22:4711–6.

    Article  PubMed  CAS  Google Scholar 

  15. Czuczman MS, Koryzna A, Mohr A, et al. Rituximab in combination with fludarabine chemotherapy in low-grade or follicular lymphoma. J Clin Oncol. 2005;23:694–704.

    Article  PubMed  CAS  Google Scholar 

  16. Hiddemann W, Kneba M, Dreyling M, et al. Frontline therapy with rituximab added to the combination of cyclophosphamide, doxorubicin, vincristine, and prednisone (CHOP) significantly improves the outcome for patients with advanced-stage follicular lymphoma compared with therapy with CHOP alone: results of a prospective randomized study of the German Low-Grade Lymphoma Study Group. Blood. 2005;106:3725–32.

    Article  PubMed  CAS  Google Scholar 

  17. Shan D, Ledbetter JA, Press OW. Apoptosis of malignant human B-cell by ligation of CD20 with monoclonal antibodies. Blood. 1998;91:1644–52.

    PubMed  CAS  Google Scholar 

  18. Shan D, Ledbetter JA, Press OW. Signaling events involved in anti-CD20-induced apoptosis of malignant human B-cells. Cancer Immunol Immunother. 2000;48:673–83.

    Article  PubMed  CAS  Google Scholar 

  19. Popoff IJ, Savage JA, Blake J, et al. The association between CD20 and Src-family tyrosine kinases requires an additional factor. Mol Immunol. 1998;35:207–14.

    Article  PubMed  CAS  Google Scholar 

  20. Walshe CD, Beers SA, French RR, et al. Induction of cytosolic calcium flux byCD20 is dependent upon B-Cell antigen receptor signaling. J Biol Chem. 2008;25:16971–84.

    Article  CAS  Google Scholar 

  21. Hofmeister JK, Cooney D, Coggeshall KM. Clustered CD20 induced apoptosis: Src-family kinase, the proximal regulator of tyrosine phosphorylation, calcium influx, and caspase 3-dependent apoptosis. Blood Cells Mol Dis. 2000;26:133–43.

    Article  PubMed  CAS  Google Scholar 

  22. Daniels I, Abulayha AM, Thomson BJ, Haynes AP. Caspase-independent killing of Burkitt lymphoma cell lines by rituximab. Apoptosis. 2006;11:1013–23.

    Article  PubMed  CAS  Google Scholar 

  23. Hernandez-Ilizaliturri FJ, Khubchandani S, Olejniczak SH, et al. The BH3-mimetic obatoclax (GX15-070) posses a dual-mechanism-of-action and induces both apoptosis and autophagy-dependent cell death of B-cell non-Hodgkin’s lymphoma (B-NHL) cells. Blood. 2008;112(11):605a.

    Google Scholar 

  24. Gruber EA, Czuczman MS, Olejniczak SH, Knight J, Hernandez-Ilizaliturri FJ. GX15–070 and bortezomib induce up-regulation of BH3 single domain pro-apoptotic proteins puma and noxa and is associated with synergistic anti-tumor activity in rituximab-sensitive, rituximab-resistant cell lines (RSCL and RRCL), and primary lymphoma patient specimens. Blood. 2007;110:1389a.

    Google Scholar 

  25. Olejniczak S, Hernandez-Ilizaliturri FJ, Blickwedehl J, et al. Bortezomib induces a pro-apoptotic Bcl-2 family protein expression profile necessary to kill therapy-resistant B cell non-Hodgkin’s lymphoma (B-NHL). AACR Meet Abstr. 2008;4383.

  26. Stel AJ, Ten Cate B, Jacobs S, et al. Fas receptor clustering and involvement of the death receptor pathway in rituximab-mediated apoptosis with concomitant sensitization of lymphoma B cells to fas-induced apoptosis. J Immunol. 2007;178:2287–95.

    PubMed  CAS  Google Scholar 

  27. Clynes RA, Towers TL, Presta LG, et al. Inhibitory Fc receptors modulate in vivo cytoxicity against tumor targets. Nat Med. 2000;6:443–6.

    Article  PubMed  CAS  Google Scholar 

  28. Cartron G, Dacheux L, Salles G, et al. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99:754–8.

    Article  PubMed  CAS  Google Scholar 

  29. Weng WK, Levy R. Two immunoglobulin G fragment C receptor polymorphisms independently predict response to rituximab in patients with follicular lymphoma. J Clin Oncol. 2003;21:3940–7.

    Article  PubMed  CAS  Google Scholar 

  30. Anolik JH, Campbell D, Felgar RE, et al. The relationship of FcgammaRIIIa genotype to degree of B cell depletion by rituximab in the treatment of systemic lupus erythematosus. Arthritis Rheum. 2003;48:455–9.

    Article  PubMed  CAS  Google Scholar 

  31. Treon SP, Hansen M, Branagan AR, et al. Polymorphisms in FcgammaRIIIA (CD16) receptor expression are associated with clinical response to rituximab in Waldenstrom’s macroglobulinemia. J Clin Oncol. 2005;23:474–81.

    Article  PubMed  CAS  Google Scholar 

  32. Congy-Jolivet N, Probst A, Watier H, et al. Recombinant therapeutic monoclonal antibodies: mechanisms of action in relation to structural and functional duality. Crit Rev Oncol Hematol. 2007;64:226–33.

    Article  PubMed  Google Scholar 

  33. Koene HR, Kleijer M, Algra J, et al. Fc gammaRIIIa-158 V/F polymorphism influences the binding of IgG by natural killer cell Fc gammaRIIIa, independently of the Fc gammaRIIIa-48L/R/H phenotype. Blood. 1997;90:1109–14.

    PubMed  CAS  Google Scholar 

  34. Dall’Ozzo S, Tartas S, Paintaud G, et al. Rituximab-dependent cytotoxicity by natural killer cells: influence of FCGR3A polymorphism on the concentration-effect relationship. Cancer Res. 2004;64:4664–9.

    Article  PubMed  Google Scholar 

  35. Hatjiharissi E, Xu L, Santos DD, et al. Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the Fc{gamma}RIIIa-158 V/V and V/F polymorphism. Blood. 2007;110:2561–4.

    Article  PubMed  CAS  Google Scholar 

  36. Galimberti S, Palumbo GA, Caracciolo F, et al. The efficacy of rituximab plus Hyper-CVAD regimen in mantle cell lymphoma is independent of FCgammaRIIIa and FCgammaRIIa polymorphisms. J Chemother. 2007;19:315–21.

    PubMed  CAS  Google Scholar 

  37. Carlotti E, Palumbo GA, Oldani E, et al. FcgammaRIIIA and FcgammaRIIA polymorphisms do not predict clinical outcome of follicular non-Hodgkin’s lymphoma patients treated with sequential CHOP and rituximab. Haematologica. 2007;92:1127–30.

    Article  PubMed  CAS  Google Scholar 

  38. Mitrovic Z, Aurer I, Radman I, et al. FCgammaRIIIA and FCgammaRIIA polymorphisms are not associated with response to rituximab and CHOP in patients with diffuse large B-cell lymphoma. Haematologica. 2007;92:998–9.

    Article  PubMed  CAS  Google Scholar 

  39. Kim DH, Jung HD, Kim JG, et al. FCGR3A gene polymorphisms may correlate with response to frontline R-CHOP therapy for diffuse large B-cell lymphoma. Blood. 2006;108:2720–5.

    Article  PubMed  CAS  Google Scholar 

  40. Hernandez-Ilizaliturri FJ, Jupudy V, Ostberg J, et al. Neutrophils contribute to the biological antitumor activity of rituximab in a non-Hodgkin’s lymphoma severe combined immunodeficiency mouse model. Clin Cancer Res. 2003;9:5866–73.

    PubMed  CAS  Google Scholar 

  41. Binyamin L, Alpaugh RP, Hughes TL, et al. Blocking NK cell inhibitory self-recognition promotes antibody-dependent cellular cytotoxicity in a model of anti-lymphoma therapy. J Immunol. 2008;180:6392–401.

    PubMed  CAS  Google Scholar 

  42. Hernandez-Ilizaliturri FJ, Jupudy V, Reising S, et al. Concurrent administration of granulocyte colony-stimulating factor or granulocyte-monocyte colony-stimulating factor enhances the biological activity of rituximab in a severe combined immunodeficiency mouse lymphoma model. Leuk Lymphoma. 2005;46:1775–84.

    Article  PubMed  CAS  Google Scholar 

  43. Hernandez-Ilizaliturri FJ, Reddy N, Holkova B, et al. Immunomodulatory drug CC-5013 or CC-4047 and rituximab enhance antitumor activity in a severe combined immunodeficient mouse lymphoma model. Clin Cancer Res. 2005;11:5984–92.

    Article  PubMed  CAS  Google Scholar 

  44. Reddy N, Hernandez-Ilizaliturri FJ, Deeb G, et al. Immunomodulatory drugs stimulate natural killer-cell function, alter cytokine production by dendritic cells, and inhibit angiogenesis enhancing the anti-tumour activity of rituximab in vivo. Br J Haematol. 2008;140:36–45.

    PubMed  CAS  Google Scholar 

  45. Niitsu N, Hayama M, Okamoto M, et al. Phase I study of Rituximab-CHOP regimen in combination with granulocyte colony-stimulating factor in patients with follicular lymphoma. Clin Cancer Res. 2004;10:4077–82.

    Article  PubMed  CAS  Google Scholar 

  46. Van der Kolk LE, Grillo-Lopez AJ, Baars JW, et al. Treatment of relapsed B-cell non-Hodgkin’s lymphoma with a combination of chimeric anti-CD20 monoclonal antibodies (rituximab) and G-CSF: final report on safety and efficacy. Leukemia. 2003;17:1658–64.

    Article  PubMed  CAS  Google Scholar 

  47. Van der Kolk LE, de Haas M, Grillo-Lopez AJ, et al. Analysis of CD0-dependent cellular cytotoxicity by G-CSF-stimulated neutrophils. Leukemia. 2002;16:693–9.

    Article  PubMed  Google Scholar 

  48. Cartron G, Zhao-Yang L, Baudrad M, et al. Granulocyte–macrophage colony-Stimulating factor potentiates rituximab in patients with relapsed follicular lymphoma: results of a Phase II study. J Clin Oncol. 2008;26:2725–31.

    Article  PubMed  CAS  Google Scholar 

  49. McLaughlin P, Liu N, Poindexter N, et al. Rituximab plus GM-CSF (Leukine) for indolent lymphoma. Ann Oncol. 2005;16:68.

    Article  Google Scholar 

  50. Leidi M, Gotti E, Bologna L, et al. M2 macrophages phagocytose rituximab-opsonized leukemic targets more efficiently than M1 cells in vitro. J Immunol. 2009;182:4415–22.

    Article  PubMed  CAS  Google Scholar 

  51. Shimadoi S, Takami A, Kondo Y, et al. Macrophage colony-stimulating factor enhances rituximab-dependent cellular cytotoxicity by monocytes. Cancer Sci. 2007;98:1368–72.

    Article  PubMed  CAS  Google Scholar 

  52. Albertsson PA, Basse PH, Hokland M, et al. NK cells and the tumor microenvironment: implications for NK cell function and anti-tumour activity. Trends Immunol. 2003;24:603–9.

    Article  PubMed  CAS  Google Scholar 

  53. Berinstein N, Levy R. Treatment of a murine B cell lymphoma with monoclonal antibodies and IL 2. J Immunol. 1987;139:971–6.

    PubMed  CAS  Google Scholar 

  54. Berinstein N, Starnes CO, Levy R. Specific enhancement of the therapeutic effect of anti-idiotype antibodies on a murine B cell lymphoma by IL-2. J Immunol. 1988;140:2839–45.

    PubMed  CAS  Google Scholar 

  55. Khan KD, Emmanouilides C, Benson DM, et al. A phase 2 study of rituximab in combination with recombinant interleukin-2 for rituximab-refractory indolent non-Hodgkin’s lymphoma. Clin Cancer Res. 2006;12:7046–53.

    Article  PubMed  CAS  Google Scholar 

  56. Berdeja JG, Hess A, Lucas DM, et al. Systemic interleukin-2 and adoptive transfer of lymphokine-activated killer cells improves antibody-dependent cellular cytotoxicity in patients with relapsed B-cell lymphoma treated with rituximab. Clin Cancer Res. 2007;13:2392–9.

    Article  PubMed  CAS  Google Scholar 

  57. Ansell SM, Witzig TE, Kurtin PJ, et al. Phase I study of interleukin-12 in combination with rituximab in patients with B-cell non-Hodgkin lymphoma. Blood. 2002;99:67–74.

    Article  PubMed  CAS  Google Scholar 

  58. Ansell SM, Geyer SM, Maurer GM, et al. Randomized phase II study of interleukin-12 in combination with rituximab in previously treated non-Hodgkin’s lymphoma patients. Clin Cancer Res. 2006;12:6056–63.

    Article  PubMed  CAS  Google Scholar 

  59. Castermans K, Tabruyn S, Zeng R, et al. Angiostatic activity of the antitumor cytokine interleukin-21. Blood. 2008;112:4940–7.

    Article  PubMed  CAS  Google Scholar 

  60. Gowda A, Roda J, Hussain S, et al. IL-21 mediates apoptosis through up regulation of the BH3 family member BIM and enhances both direct and antibody-dependent cellular cytotoxicity in primary chronic lymphocytic leukemia cells in vitro. Blood. 2008;111:4723–30.

    Article  PubMed  CAS  Google Scholar 

  61. Moga E, Alvarez E, Canto E, et al. NK cells stimulated with IL-15 or CpG ODN enhance rituximab-dependent cellular cytotoxicity against B-cell lymphoma. Exp Hematol. 2008;36:69–77.

    Article  PubMed  CAS  Google Scholar 

  62. Wu L, Adams M, Carter T. Lenalidomide enhances natural killer cell and monocyte-mediated antibody-dependent cellular cytotoxicity of rituximab-treated CD20+ tumor cells. Clin Cancer Res. 2008;14:4650–7.

    Article  PubMed  CAS  Google Scholar 

  63. Habermann TM, Lossos IS, Justice G, et al. Lenalidomide oral monotherapy produces a high response rate in patients with relapsed or refractory mantle cell lymphoma. Br J Haematol. 2009;145:344–9.

    Article  PubMed  CAS  Google Scholar 

  64. Chanan-Khan A, Miller K, Musial L, et al. Clinical efficacy of lenalidomide in patients with relapsed or refractory chronic lymphocytic leukemia: results of a phase II Study. J Clin Oncol. 2006;24:5343–9.

    Article  PubMed  CAS  Google Scholar 

  65. Mori K, Lida S, Yamane-Ohnuki N, et al. Non-fucosylated therapeutic antibodies: the next generation of therapeutic antibodies. Cytotechnology. 2007;55:109–14.

    Article  PubMed  CAS  Google Scholar 

  66. Lida S, Misaka H, Inoue M, et al. Nonfucosylated therapeutic IgG1antibody can evade the inhibitory rffect of derumImmunoglobulin G on antibody-dependent cellular cytotoxicity through its high binding to Fc:RIIIa. Clin Cancer Res. 2006;12:2879–87.

    Article  CAS  Google Scholar 

  67. Iida S, Kuni-Kamochi R, Mori K, et al. Two mechanisms of the enhanced antibody-dependent cellular cytotoxicity (ADCC) efficacy of non-fucosylated therapeutic antibodies in human blood. BMC Cancer. 2009;9:58.

    Article  PubMed  CAS  Google Scholar 

  68. Niwa R, Kobayashi Y, et al. Enhanced natural killer cell binding and activation by low-fucose IgG1 antibody results in potent antibody-dependent cellular cytotoxicity induction at lower antigen density. Clin Cancer Res. 2005;11:2327–36.

    Article  PubMed  CAS  Google Scholar 

  69. Stanglmaier M, Faltin M, Ruf P, et al. Bi20 (FBTA05), a novel trifunctionalbispecific antibody (anti-CD20 3 anti-CD3), mediates efficient killing of B-cell lymphoma cells even with very low CD20 expression levels. Int J Cancer. 2008;123:1181–9.

    Article  PubMed  CAS  Google Scholar 

  70. Gall JM, Davol PA, Grabert RC, et al. T-cells armed with anti-CD3 × anti-CD20 bispecific antibody enhance killing of CD20 + malignant B cells and bypass complement-mediated rituximab resistance in vitro. Exp Hematol. 2005;33:452–9.

    Article  PubMed  CAS  Google Scholar 

  71. Li B, Shu Shi S, Qian W, et al. Development of novel tetravalent anti-CD20 antibodies with potent antitumor activity. Cancer Res. 2008;68:2400–8.

    Article  PubMed  CAS  Google Scholar 

  72. Rossi EA, Goldenberg DM, Cardillo TM, et al. Novel designs of multivalent anti-CD20 humanized antibodies as improved lymphoma therapeutics. Cancer Res. 2008;68:8384–92.

    Article  PubMed  CAS  Google Scholar 

  73. Manches O, Lui G, Chaperot L, et al. In vitro mechanisms of action of rituximab on primary non-Hodgkin’s lymphomas. Blood. 2002;101:949–54.

    Article  PubMed  CAS  Google Scholar 

  74. Golay J, Zaffaroni L, Vaccari T, et al. Biologic response of B lymphoma cells to anti-CD20 monoclonal antibody rituximab in vitro: CD55 and CD59 regulate complement mediated celllysis. Blood. 2000;95:3900–8.

    PubMed  CAS  Google Scholar 

  75. Taylor RP, Lindorfer MA. Immunotherapeutic mechanisms of anti-CD20 monoclonal antibodies. Curr Opin Immunol. 2008;20:444–9.

    Article  PubMed  CAS  Google Scholar 

  76. Cruz RI, Hernandez-Ilizaliturri FJ, Olejniczak S, et al. CD52 over-expression affects rituximab-associated complement-mediated cytotoxicity but not antibody-dependent cellular cytotoxicity: preclinical evidence that targeting CD52 with alemtuzumab may reverse acquired resistance to rituximab in non-Hodgkin lymphoma. Leuk Lymphoma. 2007;48:2424–36.

    Article  PubMed  CAS  Google Scholar 

  77. Di Gaetano N, Xiao Y, Erba E, et al. Synergism between fludarabine and rituximab revealed in a follicular lymphoma cell line resistant to the cytotoxic activity of either drug alone. Br J Haematol. 2001;114:800–9.

    Article  PubMed  CAS  Google Scholar 

  78. Teeling JL, Mackus WJ, Wiegman LJ, et al. The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol. 2006;177:362–71.

    PubMed  CAS  Google Scholar 

  79. Hagenbeek A, Gadeberg O, Johnson P, et al. First clinical use of ofatumumab, a novel fully human anti-CD20 monoclonal antibody in relapsed or refractory follicular lymphoma: results of a phase 1/2 trial. Blood. 2008;111:5486–95.

    Article  PubMed  CAS  Google Scholar 

  80. Coiffier B, Lepretre S, Pedersen LM, et al. Safety and efficacy of ofatumumab, a fully human monoclonal anti-CD20 antibody, in patients with relapsed or refractory B-cell chronic lymphocytic leukemia: a phase 1–2 study. Blood. 2008;111:1094–100.

    Article  PubMed  CAS  Google Scholar 

  81. Ziller F, Macor P, Bulla R, et al. Controlling complement resistance in cancer by using human monoclonal antibodies that neutralize complement regulatory proteins CD55 and CD59. Eur J Immunol. 2005;35:2175–83.

    Article  PubMed  CAS  Google Scholar 

  82. Macor P, Tripodo C, Zorzet S, et al. In vivo targeting of human neutralizing antibodies against CD55 and CD59 to lymphoma cells increases the antitumor activity of rituximab. Cancer Res. 2007;67:10556–63.

    Article  PubMed  CAS  Google Scholar 

  83. Peng W, Zhang X, Mohamed N, et al. A deImmunizedchimeric anti-C3b/iC3b monoclonal antibody enhances rituximab-mediated killing in NHL and CLL cells via complement activation. Cancer Immunol Immunother. 2005;54:1172–9.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myron S. Czuczman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riaz, W., Hernandez-Ilizaliturri, F.J. & Czuczman, M.S. Strategies to enhance rituximab anti-tumor activity in the treatment of CD20-positive B-cell neoplasms. Immunol Res 46, 192–205 (2010). https://doi.org/10.1007/s12026-009-8121-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-009-8121-x

Keywords

Navigation