Skip to main content
Log in

Anti-Sm B cell tolerance and tolerance loss in systemic lupus erythematosus

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Autoimmunity is a serious health problem and understanding the maintenance and loss of tolerance to self-antigens are key issues in developing new therapeutic strategies to treat these diseases. Despite considerable progress toward understanding B cell tolerance and tolerance loss, much remains unknown, particularly regarding B cells specific for antigens targeted in disease. Our interest in systemic lupus erythematosus (SLE), a B cell-mediated autoimmune disease characterized by the production of autoantibodies to numerous nuclear antigens, is focused on understanding B cell tolerance and tolerance loss to the SLE-specific autoantigen Sm in mice and humans. Our work aims to provide the cellular and molecular underpinnings for the development of rational therapies to target autoreactive B cells in human SLE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hahn BH. Antibodies to DNA. N Engl J Med. 1998;338(19):1359–68.

    Article  PubMed  CAS  Google Scholar 

  2. Su W, Madaio MP. Recent advances in the pathogenesis of lupus nephritis: autoantibodies and B cells. Semin Nephrol. 2003;23(6):564–8.

    Article  PubMed  CAS  Google Scholar 

  3. Ciruelo E, de la Cruz J, Lopez I, Gomez-Reino JJ. Cumulative rate of relapse of lupus nephritis after successful treatment with cyclophosphamide. Arthritis Rheum. 1996;39(12):2028–34.

    Article  PubMed  CAS  Google Scholar 

  4. Illei GG, Takada K, Parkin D, Austin HA, Crane M, Yarboro CH, et al. Renal flares are common in patients with severe proliferative lupus nephritis treated with pulse immunosuppressive therapy: long-term followup of a cohort of 145 patients participating in randomized controlled studies. Arthritis Rheum. 2002;46(4):995–1002.

    Article  PubMed  CAS  Google Scholar 

  5. Nachman PH, Hogan SL, Jennette JC, Falk RJ. Treatment response and relapse in antineutrophil cytoplasmic autoantibody-associated microscopic polyangiitis and glomerulonephritis. J Am Soc Nephrol. 1996;7(1):33–9.

    PubMed  CAS  Google Scholar 

  6. Harley JB, Alarcon-Riquelme ME, Criswell LA, Jacob CO, Kimberly RP, Moser KL, et al. Genome-wide association scan in women with systemic lupus erythematosus identifies susceptibility variants in ITGAM, PXK, KIAA1542 and other loci. Nat Genet. 2008;40(2):204–10.

    Article  PubMed  CAS  Google Scholar 

  7. Hom G, Graham RR, Modrek B, Taylor KE, Ortmann W, Garnier S, et al. Association of systemic lupus erythematosus with C8orf13-BLK and ITGAM-ITGAX. N Engl J Med. 2008;358(9):900–9.

    Article  PubMed  CAS  Google Scholar 

  8. Truedsson L, Bengtsson AA, Sturfelt G. Complement deficiencies and systemic lupus erythematosus. Autoimmunity. 2007;40(8):560–6.

    Article  PubMed  CAS  Google Scholar 

  9. Manderson AP, Botto M, Walport MJ. The role of complement in the development of systemic lupus erythematosus. Annu Rev Immunol. 2004;22:431–56.

    Article  PubMed  CAS  Google Scholar 

  10. Hart SP, Smith JR, Dransfield I. Phagocytosis of opsonized apoptotic cells: roles for ‘old-fashioned’ receptors for antibody and complement. Clin Exp Immunol. 2004;135(2):181–5.

    Article  PubMed  CAS  Google Scholar 

  11. Casciola-Rosen LA, Anhalt G, Rosen A. Autoantigens targeted in systemic lupus erythematosus are clustered in two populations of surface structures on apoptotic keratinocytes. J Exp Med. 1994;179(4):1317–30.

    Article  PubMed  CAS  Google Scholar 

  12. Rosen A, Casciola-Rosen L. Autoantigens as substrates for apoptotic proteases: implications for the pathogenesis of systemic autoimmune disease. Cell Death Differ. 1999;6(1):6–12.

    Article  PubMed  CAS  Google Scholar 

  13. Qian Y, Wang H, Clarke SH. Impaired clearance of apoptotic cells induces the activation of autoreactive anti-Sm marginal zone and B-1 B cells. J Immunol. 2004;172(1):625–35.

    PubMed  CAS  Google Scholar 

  14. Mevorach D, Zhou JL, Song X, Elkon KB. Systemic exposure to irradiated apoptotic cells induces autoantibody production. J Exp Med. 1998;188(2):387–92.

    Article  PubMed  CAS  Google Scholar 

  15. Yong J, Wan L, Dreyfuss G. Why do cells need an assembly machine for RNA-protein complexes? Trends Cell Biol. 2004;14(5):226–32.

    Article  PubMed  CAS  Google Scholar 

  16. Tan EM. Antinuclear antibodies: diagnostic markers for autoimmune diseases and probes for cell biology. Adv Immunol. 1989;44:93–151.

    Article  PubMed  CAS  Google Scholar 

  17. Santulli-Marotto S, Retter MW, Gee R, Mamula MJ, Clarke SH. Autoreactive B cell regulation: peripheral induction of developmental arrest by lupus-associated autoantigens. Immunity. 1998;8(2):209–19.

    Article  PubMed  CAS  Google Scholar 

  18. Bloom DD, Davignon JL, Retter MW, Shlomchik MJ, Pisetsky DS, Cohen PL, et al. V region gene analysis of anti-Sm hybridomas from MRL/Mp-lpr/lpr mice. J Immunol. 1993;150(4):1591–610.

    PubMed  CAS  Google Scholar 

  19. Borrero M, Clarke SH. Low-affinity anti-Smith antigen B cells are regulated by anergy as opposed to developmental arrest or differentiation to B-1. J Immunol. 2002;168(1):13–21.

    PubMed  CAS  Google Scholar 

  20. Santulli-Marotto S, Qian Y, Ferguson S, Clarke SH. Anti-Sm B cell differentiation in Ig transgenic MRL/Mp-lpr/lpr mice: altered differentiation and an accelerated response. J Immunol. 2001;166(8):5292–9.

    PubMed  CAS  Google Scholar 

  21. Qian Y, Conway KL, Lu X, Seitz HM, Matsushima GK, Clarke SH. Autoreactive MZ and B-1 B-cell activation by Faslpr is coincident with an increased frequency of apoptotic lymphocytes and a defect in macrophage clearance. Blood. 2006;108(3):974–82.

    Article  PubMed  CAS  Google Scholar 

  22. Goodnow CC, Cyster JG, Hartley SB, Bell SE, Cooke MP, Healy JI, et al. Self-tolerance checkpoints in B lymphocyte development. Adv Immunol. 1995;59:279–368.

    Article  PubMed  CAS  Google Scholar 

  23. Gay D, Saunders T, Camper S, Weigert M. Receptor editing: an approach by autoreactive B cells to escape tolerance. J Exp Med. 1993;177(4):999–1008.

    Article  PubMed  CAS  Google Scholar 

  24. Nemazee D, Weigert M. Revising B cell receptors. J Exp Med. 2000;191(11):1813–7.

    Article  PubMed  CAS  Google Scholar 

  25. Mandik-Nayak L, Bui A, Noorchashm H, Eaton A, Erikson J. Regulation of anti-double-stranded DNA B cells in nonautoimmune mice: localization to the T-B interface of the splenic follicle. J Exp Med. 1997;186(8):1257–67.

    Article  PubMed  CAS  Google Scholar 

  26. Cyster JG, Hartley SB, Goodnow CC. Competition for follicular niches excludes self-reactive cells from the recirculating B-cell repertoire. Nature. 1994;371(6496):389–95.

    Article  PubMed  CAS  Google Scholar 

  27. Culton DA, O’Conner BP, Conway KL, Diz R, Rutan J, Vilen BJ, et al. Early preplasma cells define a tolerance checkpoint for autoreactive B cells. J Immunol. 2006;176(2):790–802.

    PubMed  CAS  Google Scholar 

  28. William J, Euler C, Primarolo N, Shlomchik MJ. B cell tolerance checkpoints that restrict pathways of antigen-driven differentiation. J Immunol. 2006;176(4):2142–51.

    PubMed  CAS  Google Scholar 

  29. Merrell KT, Benschop RJ, Gauld SB, Aviszus K, Decote-Ricardo D, Wysocki LJ, et al. Identification of anergic B cells within a wild-type repertoire. Immunity. 2006;25(6):953–62.

    Article  PubMed  CAS  Google Scholar 

  30. Kilmon MA, Rutan JA, Clarke SH, Vilen BJ. Low-affinity, Smith antigen-specific B cells are tolerized by dendritic cells and macrophages. J Immunol. 2005;175(1):37–41.

    PubMed  CAS  Google Scholar 

  31. Qian Y, Santiago C, Borrero M, Tedder TF, Clarke SH. Lupus-specific antiribonucleoprotein B cell tolerance in nonautoimmune mice is maintained by differentiation to B-1 and governed by B cell receptor signaling thresholds. J Immunol. 2001;166(4):2412–9.

    PubMed  CAS  Google Scholar 

  32. Kilmon MA, Wagner NJ, Garland AL, Lin L, Aviszus K, Wysocki LJ, et al. Macrophages prevent the differentiation of autoreactive B cells by secreting CD40 ligand and IL-6. Blood. 2007;110:1595–602.

    Article  PubMed  CAS  Google Scholar 

  33. Lopes-Carvalho T, Kearney JF. Development and selection of marginal zone B cells. Immunol Rev. 2004;197:192–205.

    Article  PubMed  Google Scholar 

  34. Lopes-Carvalho T, Kearney JF. Marginal zone B cell physiology and disease. Curr Dir Autoimmun. 2005;8:91–123.

    Article  PubMed  CAS  Google Scholar 

  35. Oliver AM, Martin F, Gartland GL, Carter RH, Kearney JF. Marginal zone B cells exhibit unique activation, proliferative and immunoglobulin secretory responses. Eur J Immunol. 1997;27(9):2366–74.

    Article  PubMed  CAS  Google Scholar 

  36. Quartier P, Potter PK, Ehrenstein MR, Walport MJ, Botto M. Predominant role of IgM-dependent activation of the classical pathway in the clearance of dying cells by murine bone marrow-derived macrophages in vitro. Eur J Immunol. 2005;35(1):252–60.

    Article  PubMed  CAS  Google Scholar 

  37. Lesley R, Xu Y, Kalled SL, Hess DM, Schwab SR, Shu HB, Cyster JG. Reduced competitiveness of autoantigen-engaged B cells due to increased dependence on BAFF. Immunity. 2004;20(4):441–53.

    Article  PubMed  CAS  Google Scholar 

  38. Scott RS, McMahon EJ, Pop SM, Reap EA, Caricchio R, Cohen PL, et al. Phagocytosis and clearance of apoptotic cells is mediated by MER. Nature. 2001;411(6834):207–11.

    Article  PubMed  CAS  Google Scholar 

  39. Watanabe-Fukunaga R, Brannan CI, Copeland NG, Jenkins NA, Nagata S. Lymphoproliferation disorder in mice explained by defects in Fas antigen that mediates apoptosis. Nature. 1992;356(6367):314–7.

    Article  PubMed  CAS  Google Scholar 

  40. Theofilopoulos AN, Dixon FJ. Murine models of systemic lupus erythematosus. Adv Immunol. 1985;37:269–390.

    Article  PubMed  CAS  Google Scholar 

  41. Gerloni M, Lo D, Zanetti M. DNA immunization in relB-deficient mice discloses a role for dendritic cells in IgM→IgG1 switch in vivo. Eur J Immunol. 1998;28(2):516–24.

    Article  PubMed  CAS  Google Scholar 

  42. MacPherson G, Kushnir N, Wykes M. Dendritic cells, B cells and the regulation of antibody synthesis. Immunol Rev. 1999;172:325–34.

    Article  PubMed  CAS  Google Scholar 

  43. Qi H, Egen JG, Huang AY, Germain RN. Extrafollicular activation of lymph node B cells by antigen-bearing dendritic cells. Science. 2006;312(5780):1672–6.

    Article  PubMed  CAS  Google Scholar 

  44. Balazs M, Martin F, Zhou T, Kearney J. Blood dendritic cells interact with splenic marginal zone B cells to initiate T-independent immune responses. Immunity. 2002;17(3):341–52.

    Article  PubMed  CAS  Google Scholar 

  45. Baumann I, Kolowos W, Voll RE, Manger B, Gaipl U, Neuhuber WL, et al. Impaired uptake of apoptotic cells into tingible body macrophages in germinal centers of patients with systemic lupus erythematosus. Arthritis Rheum. 2002;46(1):191–201.

    Article  PubMed  Google Scholar 

  46. Lu Q, Lemke G. Homeostatic regulation of the immune system by receptor tyrosine kinases of the Tyro 3 family. Science. 2001;293(5528):306–11.

    Article  PubMed  CAS  Google Scholar 

  47. Guo Z, Zhang M, An H, Chen W, Liu S, Guo J, et al. Fas ligation induces IL-1beta-dependent maturation and IL-1beta-independent survival of dendritic cells: different roles of ERK and NF-kappaB signaling pathways. Blood. 2003;102(13):4441–7.

    Article  PubMed  CAS  Google Scholar 

  48. Shlomchik MJ, Aucoin AH, Pisetsky DS, Weigert MG. Structure and function of anti-DNA autoantibodies derived from a single autoimmune mouse. Proc Natl Acad Sci USA. 1987;84(24):9150–4.

    Article  PubMed  CAS  Google Scholar 

  49. Shlomchik MJ, Marshak-Rothstein A, Wolfowicz CB, Rothstein TL, Weigert MG. The role of clonal selection and somatic mutation in autoimmunity. Nature. 1987;328(6133):805–11.

    Article  PubMed  CAS  Google Scholar 

  50. Blaese RM, Grayson J, Steinberg AD. Increased immunoglobulin-secreting cells in the blood of patients with active systemic lupus erythematosus. Am J Med. 1980;69(3):345–50.

    Article  PubMed  CAS  Google Scholar 

  51. Budman DR, Merchant EB, Steinberg AD, Doft B, Gershwin ME, Lizzio E, et al. Increased spontaneous activity of antibody-forming cells in the peripheral blood of patients with active SLE. Arthritis Rheum. 1977;20(3):829–33.

    Article  PubMed  CAS  Google Scholar 

  52. Suzuki H, Sakurami T, Imura H. Relationship between reduced B cell susceptibility to IgM antibodies and reduced IgD-bearing B cells in patients with systemic lupus erythematosus. Arthritis Rheum. 1982;25(12):1451–9.

    Article  PubMed  CAS  Google Scholar 

  53. Liossis SN, Kovacs B, Dennis G, Kammer GM, Tsokos GC. B cells from patients with systemic lupus erythematosus display abnormal antigen receptor-mediated early signal transduction events. J Clin Invest. 1996;98(11):2549–57.

    Article  PubMed  CAS  Google Scholar 

  54. Tsokos GC, Wong HK, Enyedy EJ, Nambiar MP. Immune cell signaling in lupus. Curr Opin Rheumatol. 2000;12(5):355–63.

    Article  PubMed  CAS  Google Scholar 

  55. Bijl M, Horst G, Limburg PC, Kallenberg CG. Expression of costimulatory molecules on peripheral blood lymphocytes of patients with systemic lupus erythematosus. Ann Rheum Dis. 2001;60(5):523–6.

    Article  PubMed  CAS  Google Scholar 

  56. Folzenlogen D, Hofer MF, Leung DY, Freed JH, Newell MK. Analysis of CD80 and CD86 expression on peripheral blood B lymphocytes reveals increased expression of CD86 in lupus patients. Clin Immunol Immunopathol. 1997;83(3):199–204.

    Article  PubMed  CAS  Google Scholar 

  57. Odendahl M, Jacobi A, Hansen A, Feist E, Hiepe F, Burmester GR, et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus. J Immunol. 2000;165(10):5970–9.

    PubMed  CAS  Google Scholar 

  58. Jacobi AM, Odendahl M, Reiter K, Bruns A, Burmester GR, Radbruch A, et al. Correlation between circulating CD27 high plasma cells and disease activity in patients with systemic lupus erythematosus. Arthritis Rheum. 2003;48(5):1332–42.

    Article  PubMed  Google Scholar 

  59. Smith HR, Olson RR. CD5+ B lymphocytes in systemic lupus erythematosus and rheumatoid arthritis. J Rheumatol. 1990;17(6):833–5.

    PubMed  CAS  Google Scholar 

  60. Culton DA, Nicholas MW, Bunch DO, Zhen QL, Kepler TB, Dooley MA, et al. Similar CD19 dysregulation in two autoantibody-associated autoimmune diseases suggests a shared mechanism of B-cell tolerance loss. J Clin Immunol. 2007;27(1):53–68.

    Article  PubMed  CAS  Google Scholar 

  61. Falk RJ, Jennette JC. Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N Engl J Med. 1988;318(25):1651–7.

    PubMed  CAS  Google Scholar 

  62. Jennette JC, Hoidal JR, Falk RJ. Specificity of anti-neutrophil cytoplasmic autoantibodies for proteinase 3. Blood. 1990;75(11):2263–4.

    PubMed  CAS  Google Scholar 

  63. Jennette JC, Falk RJ. Small-vessel vasculitis. N Engl J Med. 1997;337(21):1512–23.

    Article  PubMed  CAS  Google Scholar 

  64. Nicholas MW, Dooley MA, Hogan SL, Anolik J, Looney J, Sanz I, et al. A novel subset of memory B cells is enriched in autoreactivity and correlates with adverse outcomes in SLE. Clin Immunol. 2008;126(2):189–201.

    Article  PubMed  CAS  Google Scholar 

  65. Narumi S, Takeuchi T, Kobayashi Y, Konishi K. Serum levels of ifn-inducible PROTEIN-10 relating to the activity of systemic lupus erythematosus. Cytokine. 2000;12(10):1561–5.

    Article  PubMed  CAS  Google Scholar 

  66. Okamoto H, Katsumata Y, Nishimura K, Kamatani N. Interferon-inducible protein 10/CXCL10 is increased in the cerebrospinal fluid of patients with central nervous system lupus. Arthritis Rheum. 2004;50(11):3731–2.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

I am indebted to all of the past and present members of my laboratory for their dedication and perseverance that has made this progress possible. I am also indebted to Dr. Barbara Vilen and the members of her laboratory for their advice and many helpful discussions. NIAID, the Arthritis Foundation, and the Lupus Foundation of America have funded this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen H. Clarke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, S.H. Anti-Sm B cell tolerance and tolerance loss in systemic lupus erythematosus. Immunol Res 41, 203–216 (2008). https://doi.org/10.1007/s12026-008-8023-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-008-8023-3

Keywords

Navigation