Skip to main content

Advertisement

Log in

Autoimmune disease: is it a disorder of the microenvironment?

  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Systemic lupus erythematosus (SLE) is a common systemic autoimmune disease that involves several vital organs including the cardiovascular system, joints, and kidneys. The pathology is characterized by accumulation of autoreactive lymphocytes that attack the patients’ own tissues, secretion of autoantibodies and deposition of immune complexes in vital organs. Chronic widespread inflammation is the hallmark of SLE and the target of current therapy. According to recent theories, intonating immune circuits of inflammatory cytokines and immune cells constitute highly specialized targets for SLE therapy, which nonetheless consists for the most part of anti-inflammatory medications and cytotoxic drugs. For advanced autoimmune disorders, cell therapy aiming at introducing “healthy” stem cells has been promising, keeping in mind that in its current state, stem cell therapy is reserved for the most advanced diseases refractory to traditional therapy. Ongoing studies in our laboratories examined the role of the bone marrow microenvironment, in particular, mesenchymal stem cells (MSCs) in the etiopathogenesis of SLE. Specifically, we are testing the hypothesis that, in human SLE mouse model, marrow MSCs are defective structurally and functionally. Preliminary data indicate that structural and functional defects in MSC population from an autoimmune mouse model for human SLE may contribute to this pathology and consequently present a target for cell therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Scadden DT. The stem-cell niche as an entity of action. Nature 2006;441:1075–9.

    Article  PubMed  CAS  Google Scholar 

  2. Azizi SA, Stokes D, Augelli BJ, DiGirolamo C, Prockop DJ. Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats—similarities to astrocyte grafts. Proc Natl Acad Sci USA 1998;95:3908–13.

    Article  PubMed  CAS  Google Scholar 

  3. Reyes M, Lund T, Lenvik T, Aguiar D, Koodie L, Verfaillie CM. Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells. Blood 2001;98:2615–25.

    Article  PubMed  CAS  Google Scholar 

  4. El-Badri NS. The mesenchymal stem cell advantage. Stem Cells Dev 2006;15:473–4.

    Article  PubMed  CAS  Google Scholar 

  5. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci, et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002;99:3838–43.

    Article  PubMed  CAS  Google Scholar 

  6. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S, et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002;30:42–8.

    Article  PubMed  Google Scholar 

  7. Krampera M, Glennie S, Dyson J, Scott D, Laylor R, Simpson E, et al. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003;101:3722–9.

    Article  PubMed  CAS  Google Scholar 

  8. Chen JL, Guo ZK, Xu C, Li YH, Hou CM, Mao N, et al. Mesenchymal stem cells suppress allogeneic T cell responses by secretion of TGF-beta1. Zhongguo Shi Yan Xue Ye Xue Za Zhi 2002;10:285–8.

    PubMed  Google Scholar 

  9. Machold KP, Smolen JS. Interferon-gamma induced exacerbation of systemic lupus erythematosus. J Rheumatol 1990;17:831–2.

    PubMed  CAS  Google Scholar 

  10. Graninger WB, Hassfeld W, Pesau BB, Machold KP, Zielinski CC, Smolen JS. Induction of systemic lupus erythematosus by interferon-gamma in a patient with rheumatoid arthritis. J Rheumatol 1991;18:1621–2.

    PubMed  CAS  Google Scholar 

  11. Frank MH, Sayegh MH. Immunomodulatory functions of mesenchymal stem cells. Lancet 2004;363:1411–2.

    Article  PubMed  Google Scholar 

  12. Cahill RA, Jones OY, Klemperer M, Steele A, Mueller TO, el-Badri N, et al. Replacement of recipient stromal/mesenchymal cells after bone marrow transplantation using bone fragments and cultured osteoblast-like cells. Biol Blood Marrow Transplant 2004;10:709–17.

    Article  PubMed  Google Scholar 

  13. Kushida T, Inaba M, Takeuchi K, Sugiura K, Ogawa R, Ikehara S. Treatment of intractable autoimmune diseases in MRL/lpr mice using a new strategy for allogeneic bone marrow transplantation. Blood 2000;95:1862–8.

    PubMed  CAS  Google Scholar 

  14. El-Badri NS, Wang BY, Steele A, Cherry Marikar Y, Mizobe K, Good RA. Successful prevention of autoimmune disease by transplantation of adequate number of fully allogeneic hematopoietic stem cells. Transplantation 2000;70:870–7.

    Article  PubMed  CAS  Google Scholar 

  15. Ikehara S. Successful allogeneic bone marrow transplantation. Crucial roles of stromal cells in prevention of graft rejection. Acta Haematol 2001;105:172–8.

    Article  PubMed  CAS  Google Scholar 

  16. Klyushnenkova E, Mosca JD, Zernetkina V, Majumdar MK, Beggs KJ, Simonetti DW, et al. T cell responses to allogeneic human mesenchymal stem cells: immunogenicity, tolerance, and suppression. J Biomed Sci 2005;12:47–57.

    Article  PubMed  CAS  Google Scholar 

  17. Le Blanc K, Tammik L, Sundberg B, Haynesworth SE, Ringden O. Mesenchymal stem cells inhibit and stimulate mixed lymphocyte cultures and mitogenic responses independently of the major histocompatibility complex. Scand J Immunol 2003;57:11–20.

    Article  PubMed  CAS  Google Scholar 

  18. Uccelli A, Zappia E, Benvenuto F, Frassoni F, Mancardi G. Stem cells in inflammatory demyelinating disorders: a dual role for immunosuppression and neuroprotection. Expert Opin Biol Ther 2006;6:17–22.

    Article  PubMed  CAS  Google Scholar 

  19. Zappia E, Casazza S, Pedemonte E, Benvenuto F, Bonanni I, Gerdoni E, et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005;106:1755–61.

    Article  PubMed  CAS  Google Scholar 

  20. Castro-Malaspina H, Gay RE, Jhanwar SC, Hamilton JA, Chiarieri DR, Meyers PA, et al. Characteristics of bone marrow fibroblast colony-forming cells (CFU-F) and their progeny in patients with myeloproliferative disorders. Blood 1982;59:1046–54.

    PubMed  CAS  Google Scholar 

  21. Wang BY, Cherry El-Badri NS, Good RA. Prevention of development of autoimmune disease in BXSB mice by mixed bone marrow transplantation. Proc Natl Acad Sci USA 1997;94:12065–9.

    Article  PubMed  CAS  Google Scholar 

  22. Wang B, Yamamoto Y, El-Badri NS, Good RA. Effective treatment of autoimmune disease and progressive renal disease by mixed bone-marrow transplantation that establishes a stable mixed chimerism in BXSB recipient mice. Proc Natl Acad Sci USA 1999;96:3012–6.

    Article  PubMed  CAS  Google Scholar 

  23. Good RA, Wang BY, El-Badri NS, Steele A, Verjee T. Mixed bone marrow or mixed stem cell transplantation for prevention or treatment of lupus-like diseases in mice. Exp Nephrol 2002;10:408–20.

    Article  PubMed  Google Scholar 

  24. Dorshkind K, Green L, Godwin A, Fletcher WH. Connexin-43-type gap junctions mediate communication between bone marrow stromal cells. Blood 1993;82:38–45.

    PubMed  CAS  Google Scholar 

  25. Ploemacher RE, Mayen AE, De Koning AE, Krenacs T, Rosendaal M. Hematopoiesis: gap junction intercellular communication is likely to be involved in regulation of stroma-dependent proliferation of hemopoietic stem cells. Hematol 2000;5:133–47.

    CAS  Google Scholar 

  26. Montecino-Rodriguez E, Leathers H, Dorshkind K. Expression of connexin 43 (Cx43) is critical for normal hematopoiesis. Blood 2000;96:917–24.

    PubMed  CAS  Google Scholar 

  27. Kishimoto Y, Yamamoto Y, Ito T, Matsumoto N, Ichiyoshi H, Katsurada T, et al. Transfer of autoimmune thyroiditis and resolution of palmoplantar pustular psoriasis following allogeneic bone marrow transplantation. Bone Marrow Transplant 1997;19:1041–3.

    Article  PubMed  CAS  Google Scholar 

  28. Snowden JA, Heaton DC. Development of psoriasis after syngeneic bone marrow transplant from psoriatic donor: further evidence for adoptive autoimmunity. Br J Dermatol 1997;137:130–2.

    Article  PubMed  CAS  Google Scholar 

  29. Lampeter EF, McCann SR, Kolb H. Transfer of diabetes type 1 by bone-marrow transplantation. Lancet 1998;351:568–9.

    Article  PubMed  CAS  Google Scholar 

  30. Burt RK, Slavin S, Burns WH, Marmont AM. Induction of tolerance in autoimmune diseases by hematopoietic stem cell transplantation: getting closer to a cure? Int J Hematol 2002;1:226–47.

    Article  Google Scholar 

  31. Conboy IM, Conboy MJ, Wagers AJ, Girma ER, Weissman IL, Rando TA. Rejuvenation of aged progenitor cells by exposure to a young systemic environment. Nature 2005;433:760–4.

    Article  PubMed  CAS  Google Scholar 

  32. Bocelli-Tyndall C, Bracci L, Spagnoli G, Braccini A, Bouchenaki M, Ceredig R, et al. Bone marrow mesenchymal stromal cells (BM-MSCs) from healthy donors and auto-immune disease patients reduce the proliferation of autologous- and allogeneic-stimulated lymphocytes in vitro. Rheumatology (Oxford) 2006.

  33. Rando TA. Stem cells, ageing and the quest for immortality. Nature 2006;441:1080–6.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the Eleanor Naylor DANA Charitable Trust. This paper is dedicated to Dr. Robert A. Good who was among the first to advocate the use of stem cell transplantation for the treatment of intractable diseases, and who inspired thousands of his students to advance the field of immunology and cell transplantation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagwa S. El-Badri.

Additional information

Presented at the First Robert A Good Society Symposium, St. Petersburg, FL 2006

Rights and permissions

Reprints and permissions

About this article

Cite this article

El-Badri, N.S., Hakki, A., Ferrari, A. et al. Autoimmune disease: is it a disorder of the microenvironment?. Immunol Res 41, 79–86 (2008). https://doi.org/10.1007/s12026-007-0053-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-007-0053-8

Keywords

Navigation