Skip to main content
Log in

Sudden infant death syndrome: no significant expression of heat-shock proteins (HSP27, HSP70)

  • Original Article
  • Published:
Forensic Science, Medicine, and Pathology Aims and scope Submit manuscript

Abstract

Purpose

In industrialized countries, sudden infant death is the most common cause of death in young children. Although prone sleeping position is a well-known risk factor, hyperthermia might also be important. Pathognomonic findings of premortem hyperthermia do not exist. During stress, including thermal effects, heat-shock protein (HSP) expression increases. This study investigated hyperthermia as a contributing or pathogenic factor for sudden infant death syndrome (SIDS).

Methods

Immunohistochemical staining for HSP27 and HSP70 in the kidney, heart, and lung from 120 SIDS cases was examined.

Results

HSP70 immunostaining was negative in kidney, heart, and lung tissues in all cases and in tissues from the control group. HSP27 staining was positive in the kidney from one case, and was positive in the lungs (respiratory epithelia in 27 % of cases; vascular endothelia in 19 % of cases) and was negative in the heart. In the control group HSP27 was positive in 8 % of renal tubular tissues and in 29 % of renal vascular endothelia. Staining for HSP27 in lung tissues was positive in respiratory epithelia in 8 % of cases and for vascular endothelia in 29 %, whereas tissues from the heart were positive in only 4 %.

Conclusion

The hypothesis of hyperthermia being a pathogenic factor for SIDS was not supported by immunohistochemical visualization of HSP70 or HSP27.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bajanowski T, Poets C. Der plötzliche Säuglingstod: Epidemiologie, ätiologie, pathophysiologie und Differenzialdiagnostik. Dtsch Arztebl. 2004;101:A-3185/B-2695/C-2567.

  2. Byard R. Sudden death in the young. 3rd ed. Cambridge: University Press; 2010.

    Book  Google Scholar 

  3. Doberentz E, Genneper L, Madea B. Plötzlicher Säuglingstod. Keine renale Hitzeschockproteinexpression. Rechtsmedizin. 2011;21:522–6.

    Article  Google Scholar 

  4. Galland BC, Taylor BJ, Bolton DPG. Prone versus supine sleep position: the review of the physiological studies in SIDS research. J Paediatr Child Health. 2002;38:332–8.

    Article  CAS  PubMed  Google Scholar 

  5. Hunt CE, Brouillette RT. Sudden infant death syndrome: 1987 perspective. J Pediatr. 1987;110:669–78.

    Article  CAS  PubMed  Google Scholar 

  6. Hunt CE, Hauck FR. Sudden infant death syndrome. CMAJ. 2006;174:1861–9.

    Article  PubMed Central  PubMed  Google Scholar 

  7. Sperhake JP. Prävention des plötzlichen Säuglingstods (SIDS) in Hamburg 1995–2006. Eine populationsbasierte beobachtungspraxenstudie. Hamburg: Habilitationsschrift; 2008.

    Google Scholar 

  8. Vennemann MM, Bajanowski T, Brinkmann B, Jorch G, Sauerland C, Mitchell EA, GeSID Study Group. Sleep environment risk factors for sudden infant death syndrome: the German sudden infant death syndrome study. Pediatrics. 2009;123:1162–70.

    Article  PubMed  Google Scholar 

  9. Fleming PJ, Levine MR, Azaz Y, Wigfield R. The development of thermoregulation and interactions with the control of respiration in infants: possible relationship to sudden infant death. Acta Paediatr Scand Suppl. 1993;389:57–9.

    Article  Google Scholar 

  10. Gilbert R, Rudd P, Berry P, Fleming PJ, Hall E, White D, et al. Combined effect of infection and heavy wrapping on the risk of sudden unexpected infant death. Arch Dis Child. 1992;67:171–7.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Kleemann WJ, Schlaud M, Poets CF, Rothämel T, Tröger HD. Hyperthermia in sudden infant death. Int J Legal Med. 1996;109:139–42.

    Article  CAS  PubMed  Google Scholar 

  12. Ammari A, Schulze KF, Ohira-Kist K, Kashyap S, Fifer WP, Myers MM, et al. Effects of body position on thermal, cardioresiratory and metabolic activity in low birth weight infants. Early Hum Dev. 2009;85:497–501.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Harper RM, Kinney HC, Fleming PJ, Thach BT. Sleep influences on homeostatic functions: implications for sudden infant death syndrome. Respir Physiol. 2000;119:123–32.

    Article  CAS  PubMed  Google Scholar 

  14. Nelson EAS, Taylor BJ, Weatherall IL. Sleeping position and infant bedding may predispose to hyperthermia and the sudden infant death syndrome. Lancet. 1989;1:199–202.

    Article  CAS  PubMed  Google Scholar 

  15. North RG, Petersen SA, Wailoo MP. Lower body temperature in sleeping supine infants. Arch Dis Child. 1995;72:340–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Petersen S, Anderson ES, Lodemore M, Rawson D, Wailoo MP. Sleeping position and rectal temperature. Arch Dis Child. 1991;66:976–9.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Ponsonby AL, Dwyer T, Gibbons LE, Cochrane JA, Jones ME, Mc Call MJ. Thermal environment and sudden infant death syndrome: case-control study. Br Med J. 1992;304:277–83.

    Article  CAS  Google Scholar 

  18. Ponsonby AL, Dwyer T, Gibbons LE, Cochrane JA, Wang YG. Factors potentiating the risk of sudden infant death syndrome associated with the prone position. N Engl J Med. 1993;329:377–82.

    Article  CAS  PubMed  Google Scholar 

  19. Pfeifer K. Bedeutung der Rektaltemperaturmessung und der Umgebungstemperaturen beim plötzlichen Kindstod. Dtsch Med Wochenschr. 1980;105:1066.

    Google Scholar 

  20. Pfeifer K, Pfeifer I, Adamczyk G, Adamczyk B. Probleme des plötzlichen und unerwarteten Kindstodes aus der Sicht des Pathologen und Mikrobiologen. Dtsch Gesundheitswesen. 1977;32:317–32.

    Google Scholar 

  21. Agashe VR, Hartl FU. Roles of molecular chaperones in cytoplasmic protein folding. Semin Cell Dev Biol. 2000;11:15–25.

    Article  CAS  PubMed  Google Scholar 

  22. Beck FX, Neuhofer W, Müller E. Molecular chaperones in the kidney: distribution, putative roles, and regulation. Am J Physiol Renal Physiol. 2000;279:F203–15.

    CAS  PubMed  Google Scholar 

  23. Flanagan SW, Ryan AJ, Gisolfi CV, Moseley PL. Tissue-specific HSP70 response in animals undergoing heat stress. Am J Physiol Regul. 1995;268:R28–32.

    CAS  Google Scholar 

  24. Hall DM, Xu L, Drake VJ, Oberley TD, Moseley PL, Kregel KC. Aging reduces adaptive capacity and stress protein expression in the liver after heat stress. J Appl Physiol. 2000;89:749–59.

    CAS  PubMed  Google Scholar 

  25. Henle KJ, Leeper DB. Modification of the heat response and thermotolerance by cycloheximide, hydroxyurea and lucanthone in CHO cells. Radiat Res. 1982;90:339–47.

    Article  CAS  PubMed  Google Scholar 

  26. Kahraman L, Thach BT. Inhibitory effects of hyperthermia on mechanisms involved in autoresuscitation from hypoxic apnea in mice: a model for thermal stress causing SIDS. J Appl Physiol. 2004;97:669–74.

    Article  PubMed  Google Scholar 

  27. Katschinski DM. On heat and cells and proteins. News Physiol Sci. 2004;19:11–5.

    CAS  PubMed  Google Scholar 

  28. Madden LA, Sandström MA, Lovell RJ, McNaughton L. Inducible heat shock protein 70 and its role in preconditioning and exercise. Amino Acids. 2008;34:511–6.

    Article  CAS  PubMed  Google Scholar 

  29. Marshall S, Rothschild MA, Bohnert M. Expression of heat-shock protein 89 (Hsp70) in the respiratory tract and lungs of fire victims. Int J Legal Med. 2006;120(6):355–9.

    Article  Google Scholar 

  30. Morimoto R, Tissieres A, Georgopoulos C. Heat shock proteins: structure, function and regulation. New York: Cold Spring Harbor Laboratory Press; 1994.

    Google Scholar 

  31. Rahim RA, Boyd PA, Ainslie Patrick WJ, Burdon RH. Human heat shock protein gene polymorphisms and sudden infant death syndrome. Arch Dis Child. 1996;75:451–2.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Ritossa F. A new puffing pattern induced by temperature shock and DNA in Drosophila. Experientia. 1962;18:571–3.

    Article  CAS  Google Scholar 

  33. Ryan AJ, Gisolfi CV, Moseley PL. Synthesis of 70 K stress protein by human leukocytes: effect of exercise in the heat. J Appl Physiol. 1991;70:466–71.

    CAS  PubMed  Google Scholar 

  34. Preuss J, Dettmeyer R, Poster S, Lignitz E, Madea M. The expression of heat shock protein 70 in kidneys in cases of death due to hyperthermia. Forensic Sci Int. 2008;176:248–52.

    Article  CAS  PubMed  Google Scholar 

  35. Doberentz E, Genepper L, Böker D, Lignitz E, Madea B. Expression of heat shock protein (hsp) 27 and 70 in various organ systems in cases of death due to fire. Int J Legel Med. 2014;128:967–78.

    Article  CAS  Google Scholar 

  36. Krous HF, Beckwith JB, Byard RW, Rognum TO, Bajanowski T, Corey T, et al. Sudden infant death syndrome and unclassified sudden infant death: a definitional and diagnostic approach. Pediatrics. 2004;114:234–8.

    Article  PubMed  Google Scholar 

  37. Tausch D, Möller M. Tierexperimentelle Untersuchungen über Sauerstoffmangelzustände im Hinblick auf den“plötzlichen Kindstod”. Beitr Gerichtl Med. 1973;31:130–4.

    CAS  PubMed  Google Scholar 

  38. Poets LF, Meny RG, Chobanian MR, Bouofiglo RE. Gasping and other respirators patterns during sudden infant deaths. Pediatr Res. 1999;45:350–5.

    Article  CAS  PubMed  Google Scholar 

  39. Sederevich C, Fewell JE. Influence of core temperature on the time to last gasp and autoresuscitation from primary apnea during exposure to hypoxia in normal rat pups. J Appl Physiol. 1999;87:1346–53.

    Google Scholar 

  40. Becker VT. Einfluss der Temperatur auf die Lungenfunktionsparameter im Rahmen der isolierten hyperthermen Lungenperfusion. Dissertation. Jena. 2004.

  41. Issels RD, Hegewisch-Becker S. Chemotherapie in Kombination mit Hyperthermie. In: Schmoll HJ, Höffken K, Possinger K, editors. Kompendium internistische Onkologie. Standards in Diagnostik und Therapie. 4th ed. Heidelberg: Springer; 2006. p. 1091–108.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Madea.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Doberentz, E., Führing, S. & Madea, B. Sudden infant death syndrome: no significant expression of heat-shock proteins (HSP27, HSP70). Forensic Sci Med Pathol 12, 33–39 (2016). https://doi.org/10.1007/s12024-015-9730-4

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12024-015-9730-4

Keywords

Navigation