Skip to main content
Log in

Oncocytes, Oxyphils, Hürthle, and Askanazy Cells: Morphological and Molecular Features Of Oncocytic Thyroid Nodules

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Our understanding of oncocytic change in thyroid nodules is evaluated in light of the recent progress in understanding the mitochondrial DNA, its mutations, and somatic mutations that affect mitochondrial function. These changes are largely unrelated to the genetic events that result in proliferation and neoplastic transformation of thyroid follicular epithelial cells. The criteria for diagnosing lesions that are composed predominantly of oncocytic cells are the same as those applied to follicular lesions that do not contain oncocytic cells, including follicular variant papillary carcinomas, based on nuclear morphology, immunohistochemical profiles, and molecular markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hürthle K. Beitrage zur Kenntiss der Secretionsvorgangs in der Schilddruse. Arch Gesamte Physiol 56:1–44, 1894.

    Article  Google Scholar 

  2. Askanazy M. Patologisch anatomische Beitrage zur Kenntiss des Morbus Basedowii, insbesondere uber die dabei auftretende Muskelerkrankung. Dtsch Arch Klin Med 61:118–86, 1898.

    Google Scholar 

  3. Chang A, Harawi SJ. Oncocytes, oncocytosis, and oncocytic tumors. Pathol Annu 27:263–304, 1992.

    PubMed  Google Scholar 

  4. Nappi O, Ferrara G, Wick MR. Neoplasms composed of eosinophilic polygonal cells: an overview with consideration of different cytomorphologic patterns. Semin Diagn Pathol 16:82–90, 1999.

    CAS  PubMed  Google Scholar 

  5. Mete O, Asa SL. Aldosterone-producing adrenal cortical adenoma with oncocytic change and cytoplasmic eosinophilic globular inclusions. Endocr Pathol 20:182–5, 2009.

    Article  PubMed  Google Scholar 

  6. Asa SL. My approach to oncocytic tumours of the thyroid. J Clin Pathol 57:225–32, 2004.

    Article  CAS  PubMed  Google Scholar 

  7. Tallini G. Onocytic tumours. Virchows Arch 433:5–12, 1998.

    Article  CAS  PubMed  Google Scholar 

  8. Boerner SL, Asa SL. Biopsy interpretation of the thyroid. Philadelphia: Lippincott Williams & Wilkins, 2010.

    Google Scholar 

  9. Mete O, Kilicaslan I, Gulluoglu MG, Uysal V. Can renal oncocytoma be differentiated from its renal mimics? The utility of anti-mitochondrial, caveolin 1, CD63 and cytokeratin 14 antibodies in the differential diagnosis. Virchows Arch 447:938–46, 2005.

    Article  CAS  PubMed  Google Scholar 

  10. Tickoo SK, Amin MB, Linden MD, Lee MW, Zarboo RJ. Antimitochondrial antibody (113-1) in the differential diagnosis of granular renal cell tumors. Am J Surg Pathol 21:922–30, 1997.

    Article  CAS  PubMed  Google Scholar 

  11. Tosh D, Slack JM. How cells change their phenotype. Nat Rev Mol Cell Biol 3:187, 2002.

    Article  CAS  PubMed  Google Scholar 

  12. Slack JM. Metaplasia and transdifferentiation: from pure biology to the clinic. Nat Rev Mol Cell Biol 8:369, 2007.

    Article  CAS  PubMed  Google Scholar 

  13. Baysal BE. Role of mitochondrial mutations in cancer. Endocr Pathol 17:203–12, 2006.

    Article  CAS  PubMed  Google Scholar 

  14. Pasini B, Stratakis CA. SDH mutations in tumorigenesis and inherited endocrine tumours: lesson from the phaeochromocytoma-paraganglioma syndromes. J Intern Med 266:19–42, 2009.

    Article  CAS  PubMed  Google Scholar 

  15. Schägger H, Pfeiffer K. Supercomplexes in the respiratory chains of yeast and mammalian mitochondria. EMBO J 19:1777–83, 2000.

    Article  PubMed  Google Scholar 

  16. Hatefi Y. The mitochondrial electron transport and oxidative phosphorylation system. Annu Rev Biochem 54:1015–69, 1985.

    Article  CAS  PubMed  Google Scholar 

  17. Gasparre G, Porcelli AM, Bonora E, Pennisi LF, Toller M, Iommarini L, Ghelli A, Moretti M, Betts CM, Martinelli GN, Ceroni AR, Curcio F, Carelli V, Rugolo M, Tallini G, Romeo G. Disruptive mitochondrial DNA mutations in complex I subunits are markers of oncocytic phenotype in thyroid tumors. Proc Natl Acad Sci USA104:9001–6, 2007.

    Article  CAS  PubMed  Google Scholar 

  18. Bonora E, Porcelli AM, Gasparre G, Biondi A, Ghelli A, Carelli V, Baracca A, Tallini G, Martinuzzi A, Lenaz G, Rugolo M, Romeo G. Defective oxidative phosphorylation in thyroid oncocytic carcinoma is associated with pathogenic mitochondrial DNA mutations affecting complexes I and III. Cancer Res 66:6087–96, 2006.

    Article  CAS  PubMed  Google Scholar 

  19. Máximo V, Sobrinho-Simões M. Mitochondrial DNA ‘common’ deletion in Hürthle cell lesions of the thyroid. J Pathol 192:561–2, 2000.

    Article  PubMed  Google Scholar 

  20. Máximo V, Sobrinho-Simões M. Hürthle cell tumours of the thyroid. A review with emphasis on mitochondrial abnormalities with clinical relevance. Virchows Arch 437:107–15, 2000.

    Article  PubMed  Google Scholar 

  21. Rogounovitch T, Saenko V, Yamashita S. Mitochondrial DNA and human thyroid diseases. Endocr J 51:265–77, 2004.

    Article  CAS  PubMed  Google Scholar 

  22. Máximo V, Botelho T, Capela J, Soares P, Lima J, Taveira A, Amaro T, Barbosa AP, Preto A, Harach HR, Williams D, Sobrinho-Simões M. Somatic and germline mutation in GRIM-19, a dual function gene involved in mitochondrial metabolism and cell death, is linked to mitochondrion-rich (Hürthle cell) tumours of the thyroid. Br J Cancer 92:1892–8, 2005.

    Article  PubMed  Google Scholar 

  23. Nosé V. Familial non-medullary thyroid carcinoma: an update. Endocr Pathol 19:226–40, 2008.

    Article  PubMed  Google Scholar 

  24. Harach HR, Lesueur F, Amati P, Brown A, Canzian F, Kraimps JL, Levillain P, Menet E, Romeo G, Bonneau D. Histology of familial thyroid tumours linked to a gene mapping to chromosome 19p13.2. J Pathol 189:387–93, 1999.

    Article  CAS  PubMed  Google Scholar 

  25. Sheu SY, Handke S, Bröcker-Preuss M, Görges R, Frey UH, Ensinger C, Ofner D, Farid NR, Siffert W, Schmid KW. The C allele of the GNB3 C825T polymorphism of the G protein beta3-subunit is associated with an increased risk for the development of oncocytic thyroid tumours. J Pathol 211:60–6, 2007.

    Article  CAS  PubMed  Google Scholar 

  26. Bonora E, Evangelisti C, Bonichon F, Tallini G, Romeo G. Novel germline variants identified in the inner mitochondrial membrane transporter TIMM44 and their role in predisposition to oncocytic thyroid carcinomas. Br J Cancer 95:1529–36, 2006.

    Article  CAS  PubMed  Google Scholar 

  27. Jacques C, Fontaine JF, Franc B, Mirebeau-Prunier D, Triau S, Savagner F, Malthiery Y. Death-associated protein 3 is overexpressed in human thyroid oncocytic tumours. Br J Cancer 101:132–8, 2009.

    Article  CAS  PubMed  Google Scholar 

  28. DeLellis RA, Lloyd RV, Heitz PU, Eng C. World Health Organization classification of tumours. Pathology and genetics of tumours of endocrine organs. Lyon: IARC Press, 2004.

  29. Montone KT, Baloch ZW, LiVolsi VA. The thyroid Hürthle (oncocytic) cell and its associated pathologic conditions: a surgical pathology and cytopathology review. Arch Pathol Lab Med 8:1241–50, 2008.

    Google Scholar 

  30. Tallini G, Hsueh A, Liu S, Garcia-Rostan G, Speicher MR, Ward DC. Frequent chromosomal DNA unbalance in thyroid oncocytic (Hürthle cell) neoplasms detected by comparative genomic hybridization. Lab Invest 79:547–55, 1999.

    CAS  PubMed  Google Scholar 

  31. Ezzat S, Zheng L, Kolenda J, Safarian A, Freeman JL, Asa SL. Prevalence of activating ras mutations in morphologically characterized thyroid nodules. Thyroid 6:409–16, 1996.

    Article  CAS  PubMed  Google Scholar 

  32. Garcia-Rostan G, Zhao H, Camp RL, Pollan M, Herrero A, Pardo J, Wu R, Carcangiu ML, Costa J, Tallini G. Ras mutations are associated with aggressive tumor phenotypes and poor prognosis in thyroid cancer. J Clin Oncol 21:3226–35, 2003.

    Article  CAS  PubMed  Google Scholar 

  33. Nikiforov YE. Thyroid carcinoma: molecular pathways and therapeutic targets. Mod Pathol 21(Suppl 2):S37–43, 2008.

    Google Scholar 

  34. Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 6:292–306, 2006.

    Article  CAS  PubMed  Google Scholar 

  35. Cheung CC, Carydis B, Ezzat S, Bedard YC, Asa SL. Analysis of ret/PTC gene rearrangements refines the fine needle aspiration diagnosis of thyroid cancer. J Clin Endocrinol Metab 86:2187–90, 2001.

    Article  CAS  PubMed  Google Scholar 

  36. Trovisco V, Soares P, Preto A, de Castro IV, Lima J, Castro P, Máximo V, Botelho T, Moreira S, Meireles AM, Magalhães J, Abrosimov A, Cameselle-Teijeiro J, Sobrinho-Simões M. Type and prevalence of BRAF mutations are closely associated with papillary thyroid carcinoma histotype and patients’ age but not with tumour aggressiveness. Virchows Arch 446:589–95, 2005.

    Article  CAS  PubMed  Google Scholar 

  37. McLeod MK, Thompson NW, Hudson JL, Gaglio JA, Lloyd RV, Harness JK, Nishiyama R, Cheung PS. Flow cytometric measurements of nuclear DNA and ploidy analysis in Hürthle cell neoplasms of the thyroid. Arch Surg 123:849–54, 1988.

    CAS  PubMed  Google Scholar 

  38. Ryan JJ, Hay ID, Grant CS, Rainwater LM, Farrow GM, Goellner JR. Flow cytometric DNA measurements in benign and malignant Hürthle cell tumors of the thyroid. World J Surg 12:482–7, 1988.

    Article  CAS  PubMed  Google Scholar 

  39. Galera-Davidson H, Bibbo M, Bartels PH, Dytch HE, Puls JH, Wied GL. Correlation between automated DNA ploidy measurements of Hürthle-cell tumors and their histopathologic and clinical features. Anal Quant Cytol Histol 8:158–67, 1986.

    CAS  PubMed  Google Scholar 

  40. Bronner MP, Clevenger CV, Edmonds PR, Lowell DM, McFarland MM, LiVolsi VA. Flow cytometric analysis of DNA content in Hürthle cell adenomas and carcinomas of the thyroid. Am J Clin Pathol 89:764–9, 1988.

    CAS  PubMed  Google Scholar 

  41. Máximo V, Soares P, Lima J, Cameselle-Teijeiro J, Sobrinho-Simões M. Mitochondrial DNA somatic mutations (point mutations and large deletions) and mitochondrial DNA variants in human thyroid pathology: a study with emphasis on Hürthle cell tumors. Am J Pathol 160:1857–65, 2002.

    PubMed  Google Scholar 

  42. Bronner MP, LiVolsi VA. Oxyphilic (Askenasy/Hürthle cell) tumors of the thyroid. Microscopic features predict biologic behavior. Surg Pathol 1:137–50, 1988.

    Google Scholar 

  43. Lloyd RV, Erickson LA, Casey MB, Lam KY, Lohse CM, Asa SL, Chan JK, DeLellis RA, Harach HR, Kakudo K, LiVolsi VA, Rosai J, Sebo TJ, Sobrinho-Simoes M, Wenig BM, Lae ME. Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol 28:1336–40, 2004.

    Article  PubMed  Google Scholar 

  44. Apel RL, Ezzat S, Bapat BV, Pan N, LiVolsi VA, Asa SL. Clonality of thyroid nodules in sporadic goiter. Diagn Mol Pathol 4:113–21, 1995.

    Article  CAS  PubMed  Google Scholar 

  45. Aeschimann S, Kopp PA, Kimura ET, Zbaeren J, Tobler A, Fey MF, Studer H. Morphological and functional polymorphism within clonal thyroid nodules. J Clin Endocrinol Metab 77:846–51, 1993.

    Article  CAS  PubMed  Google Scholar 

  46. Kopp P, Kimura ET, Aeschimann S, Oestreicher M, Tobler A, Fey MF, Studer H. Polyclonal and monoclonal thyroid nodules coexist within human multinodular goiters. J Clin Endocrinol Metab 79:134–9, 1994.

    Article  CAS  PubMed  Google Scholar 

  47. Rosai J, Kuhn E, Carcangiu ML. Pitfalls in thyroid tumour pathology. Histopathology 49:107–20, 2006.

    Article  CAS  PubMed  Google Scholar 

  48. LiVolsi VA. Hashimoto’s thyroiditis: is the epithelium premalignant? International Congress Series 1299:281–8, 2007.

    Article  Google Scholar 

  49. Rosai J. Papillary thyroid carcinoma: a root-and-branch rethink. Am J Clin Pathol 130:683–6, 2008.

    Article  PubMed  Google Scholar 

  50. Rhoden KJ, Unger K, Salvatore G, Yilmaz Y, Vovk V, Chiappetta G, Qumsiyeh MB, Rothstein JL, Fusco A, Santoro M, Zitzelsberger H, Tallini G. RET/papillary thyroid cancer rearrangement in nonneoplastic thyrocytes: follicular cells of Hashimoto’s thyroiditis share low-level recombination events with a subset of papillary carcinoma. J Clin Endocrinol Metab 91:2414–23, 2006.

    Article  CAS  PubMed  Google Scholar 

  51. Sheils OM, O’eary JJ, Uhlmann V, Lättich K, Sweeney EC. ret/PTC-1 Activation in Hashimoto Thyroiditis. Int J Surg Pathol 8:185–9, 2000.

    Article  CAS  PubMed  Google Scholar 

  52. LiVolsi VA. Surgical Pathology of the thyroid, Vol 5. Philadelphia: WB Saunders, 1990.

    Google Scholar 

  53. Elsheikh TM, Asa SL, Chan JK, DeLellis RA, Heffess CS, LiVolsi VA, Wenig BM. Interobserver and intraobserver variation among experts in the diagnosis of thyroid follicular lesions with borderline nuclear features of papillary carcinoma. Am J Clin Pathol 130:736–44, 2008.

    Article  PubMed  Google Scholar 

  54. Baloch ZW, LiVolsi VA. Our approach to follicular-patterned lesions of the thyroid. J Clin Pathol 60:244–50, 2007.

    Article  PubMed  Google Scholar 

  55. Serra S, Asa SL. Controversies in thyroid pathology: the diagnosis of follicular neoplasms. Endocr Pathol 19:156–65, 2008.

    Article  PubMed  Google Scholar 

  56. Baloch ZW, Martin S, Livolsi VA. Granular cell tumor of the thyroid: a case report. Int J Surg Pathol 13:291–4, 2005.

    Article  PubMed  Google Scholar 

  57. Ghossein R, Livolsi VA. Papillary thyroid carcinoma tall cell variant. Thyroid 18:1179–81, 2008.

    Article  CAS  PubMed  Google Scholar 

  58. Mete O, Asa SL. Composite medullary and papillary thyroid carcinoma in a patient with MEN 2B: case report and review of C-cell lesions of the thyroid. Pathology Case Reviews 14:208–13, 2009

    Google Scholar 

  59. Asa SL. The role of immunohistochemical markers in the diagnosis of follicular-patterned lesions of the thyroid. Endocr Pathol 16:295–309, 2005.

    Article  PubMed  Google Scholar 

  60. Fischer S, Asa SL. Application of immunohistochemistry to thyroid neoplasms. Arch Pathol Lab Med 132:359–72, 2008.

    PubMed  Google Scholar 

  61. Cheung CC, Ezzat S, Freeman JL, Rosen IB, Asa SL. Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod Pathol 14:338–42, 2001.

    Article  CAS  PubMed  Google Scholar 

  62. Cvejic D, Savin S, Paunovic I, Tatic S, Havelka M, Sinadinovic J. Immunohistochemical localization of galectin-3 in malignant and benign human thyroid tissue. Anticancer 18:2637–41, 1998.

    CAS  Google Scholar 

  63. Orlandi F, Saggiorato E, Pivano G, Puligheddu B, Termine A, Cappia S, De Giuli P, Angeli A. Galectin-3 is a presurgical marker of human thyroid carcinoma. Cancer Res 58:3015–20, 1998.

    CAS  PubMed  Google Scholar 

  64. Inohara H, Honjo Y, Yoshii T, Akahani S, Yoshida J, Hattori K, Okamoto S, Sawada T, Raz A, Kubo T. Expression of galectin-3 in fine-needle aspirates as a diagnostic marker differentiating benign from malignant thyroid neoplasms. Cancer 85:2475–84, 1999.

    Article  CAS  PubMed  Google Scholar 

  65. Sack MJ, Astengo-Osuna C, Lin BT, Battifora H, LiVolsi VA. HBME-1 immunostaining in thyroid fine-needle aspirations: a useful marker in the diagnosis of carcinoma. Mod Pathol 10:668–74, 1997.

    CAS  PubMed  Google Scholar 

  66. Kato Y, Nakagouri T, Konishi M, Takahashi S, Gotoda N, Hasebe T, Kinosita T. Intraductal oncocytic papillary neoplasm of the pancreas with strong accumulation on FDG-PET. Hepatogastroenterology 55:900–2, 2008.

    PubMed  Google Scholar 

  67. Fukunaga N, Fujioka A, Tanaka K, Toyama R. Oncocytic hepatocellular carcinoma with numerous globular hyaline bodies. Pathol Int 46:286–91, 1996.

    Article  CAS  PubMed  Google Scholar 

  68. Hoang MP, Ayala AG, Albores-Saavedra J. Oncocytic adrenocortical carcinoma: a morphologic, immunohistochemical and ultrastructural study of four cases. Mod Pathol 15:973–8, 2002.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozgur Mete.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mete, O., Asa, S.L. Oncocytes, Oxyphils, Hürthle, and Askanazy Cells: Morphological and Molecular Features Of Oncocytic Thyroid Nodules. Endocr Pathol 21, 16–24 (2010). https://doi.org/10.1007/s12022-009-9102-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-009-9102-2

Keywords

Navigation