Skip to main content

Advertisement

Log in

Controversies in Thyroid Pathology: The Diagnosis of Follicular Neoplasms

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Thyroid nodules are common; almost 20% of the population has a palpable thyroid nodule and approximately 70% has a nodule detected by ultrasound. Thyroid cancer is the most frequent endocrine malignancy, and incidence rates have steadily increased over the last decades. Papillary carcinoma (PTC) is the most common malignant neoplasm of the thyroid; the diagnosis of this most frequent type (85–90%) has been increasing, possibly due to changing recognition of morphologic criteria. PTC is defined histologically as a malignant tumor showing evidence of follicular epithelial differentiation and characterized by distinctive nuclear features. However, there are borderline lesions that do not completely fulfill these criteria, making the diagnosis difficult. The use of immunohistochemical and molecular markers adds objective criteria to this confusing and controversial area of pathology. We review the differential diagnosis of well-differentiated follicular thyroid neoplasms and the ancillary techniques and molecular characteristics that have been proposed for application in the diagnosis of PTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ezzat S, Sarti DA, Cain DR, Braunstein GD. Thyroid incidentalomas. Prevalence by palpation and ultrasonography. Arch Intern Med 154(16):1838–40, 1994.

    Article  PubMed  CAS  Google Scholar 

  2. Lloyd RV, Erickson LA, Casey MB, Lam KY, Lohse CM, Asa SL, et al. Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol 28(10):1336–40, 2004.

    Article  PubMed  Google Scholar 

  3. Jemal A, Murray T, Ward E, Samuels A, Tiwari RC, Ghafoor A, et al. Cancer statistics, 2005. CA Cancer J Clin 55(1):10–30, 2005.

    Article  PubMed  Google Scholar 

  4. DeLellis RALR, Heitz PU, Eng C. Pathology and genetics tumours of endocrine organs. WHO classification of tumours. Lyon, France: IARC, 2004.

    Google Scholar 

  5. LiVolsi VA, Asa SL. The demise of follicular carcinoma of the thyroid gland. Thyroid 4(2):233–6, 1994.

    PubMed  CAS  Google Scholar 

  6. Apel RL, Ezzat S, Bapat BV, Pan N, LiVolsi VA, Asa SL. Clonality of thyroid nodules in sporadic goiter. Diagn Mol Pathol 4(2):113–21, 1995.

    Article  PubMed  CAS  Google Scholar 

  7. Aeschimann S, Kopp PA, Kimura ET, Zbaeren J, Tobler A, Fey MF, et al. Morphological and functional polymorphism within clonal thyroid nodules. J Clin Endocrinol Metab 77(3):846–51, 1993.

    Article  PubMed  CAS  Google Scholar 

  8. Van Sande J, Parma J, Tonacchera M, Swillens S, Dumont J, Vassart G. Somatic and germline mutations of the TSH receptor gene in thyroid diseases. J Clin Endocrinol Metab 80(9):2577–85, 1995.

    Article  PubMed  Google Scholar 

  9. Lyons J, Landis CA, Harsh G, Vallar L, Grunewald K, Feichtinger H, et al. Two G protein oncogenes in human endocrine tumors. Science 249(4969):655–9, 1990.

    Article  PubMed  CAS  Google Scholar 

  10. Porcellini A, Ciullo I, Laviola L, Amabile G, Fenzi G, Avvedimento VE. Novel mutations of thyrotropin receptor gene in thyroid hyperfunctioning adenomas. Rapid identification by fine needle aspiration biopsy. J Clin Endocrinol Metab 79(2):657–61, 1994.

    Article  PubMed  CAS  Google Scholar 

  11. Parma J, Duprez L, Van Sande J, Hermans J, Rocmans P, Van Vliet G, et al. Diversity and prevalence of somatic mutations in the thyrotropin receptor and Gs alpha genes as a cause of toxic thyroid adenomas. J Clin Endocrinol Metab 82(8):2695–701, 1997.

    Article  PubMed  CAS  Google Scholar 

  12. Krohn K, Fuhrer D, Holzapfel HP, Paschke R. Clonal origin of toxic thyroid nodules with constitutively activating thyrotropin receptor mutations. J Clin Endocrinol Metab 83(1):130–4, 1998.

    Article  PubMed  CAS  Google Scholar 

  13. Kondo T, Ezzat S, Asa SL. Pathogenetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 6(4):292–306, 2006.

    Article  PubMed  CAS  Google Scholar 

  14. Yamashina M. Follicular neoplasms of the thyroid. Total circumferential evaluation of the fibrous capsule. Am J Surg Pathol 16(4):392–400, 1992.

    Article  PubMed  CAS  Google Scholar 

  15. van Heerden JA, Hay ID, Goellner JR, Salomao D, Ebersold JR, Bergstralh EJ, et al. Follicular thyroid carcinoma with capsular invasion alone: a nonthreatening malignancy. Surgery 112(6):1130–6, 1992, discussion 1136–8.

    PubMed  Google Scholar 

  16. Harness JK, Thompson NW, McLeod MK, Eckhauser FE, Lloyd RV. Follicular carcinoma of the thyroid gland: trends and treatment. Surgery 96(6):972–80, 1984.

    PubMed  CAS  Google Scholar 

  17. Lang BH, Lo CY, Chan WF, Lam AK, Wan KY. Classical and follicular variant of papillary thyroid carcinoma: a comparative study on clinicopathologic features and long-term outcome. World J Surg 30(5):752–8, 2006.

    Article  PubMed  Google Scholar 

  18. Cheung CC, Ezzat S, Ramyar L, Freeman JL, Asa SL. Molecular basis off Hurthle cell papillary thyroid carcinoma. J Clin Endocrinol Metab 85(2):878–82, 2000.

    Article  PubMed  CAS  Google Scholar 

  19. Asa SL. My approach to oncocytic tumours of the thyroid. J Clin Pathol 57(3):225–32, 2004.

    Article  PubMed  CAS  Google Scholar 

  20. Carcangiu ML, Sibley RK, Rosai J. Clear cell change in primary thyroid tumors. A study of 38 cases. Am J Surg Pathol 9(10):705–22, 1985.

    Article  PubMed  CAS  Google Scholar 

  21. Schmid KW, Farid NR. How to define follicular thyroid carcinoma? Virchows Arch 448(4):385–93, 2006.

    Article  PubMed  Google Scholar 

  22. Cheung CC, Ezzat S, Freeman JL, Rosen IB, Asa SL. Immunohistochemical diagnosis of papillary thyroid carcinoma. Mod Pathol 14(4):338–42, 2001.

    Article  PubMed  CAS  Google Scholar 

  23. Ito Y, Yoshida H, Tomoda C, Miya A, Kobayashi K, Matsuzuka F, et al. HBME-1 expression in follicular tumor of the thyroid: an investigation of whether it can be used as a marker to diagnose follicular carcinoma. Anticancer Res 25(1A):179–82, 2005.

    PubMed  CAS  Google Scholar 

  24. Mase T, Funahashi H, Koshikawa T, Imai T, Nara Y, Tanaka Y, et al. HBME-1 immunostaining in thyroid tumors especially in follicular neoplasm. Endocr J 50(2):173–7, 2003.

    Article  PubMed  Google Scholar 

  25. Papotti M, Rodriguez J, De Pompa R, Bartolazzi A, Rosai J. Galectin-3 and HBME-1 expression in well-differentiated thyroid tumors with follicular architecture of uncertain malignant potential. Mod Pathol 18(4):541–6, 2005.

    Article  PubMed  CAS  Google Scholar 

  26. de Matos PS, Ferreira AP, de Oliveira Facuri F, Assumpcao LV, Metze K, Ward LS. Usefulness of HBME-1, cytokeratin 19 and galectin-3 immunostaining in the diagnosis of thyroid malignancy. Histopathology 47(4):391–401, 2005.

    Article  PubMed  Google Scholar 

  27. Prasad ML, Pellegata NS, Huang Y, Nagaraja HN, de la Chapelle A, Kloos RT. Galectin-3, fibronectin-1, CITED-1, HBME1 and cytokeratin-19 immunohistochemistry is useful for the differential diagnosis of thyroid tumors. Mod Pathol 18(1):48–57, 2005.

    Article  PubMed  CAS  Google Scholar 

  28. Volante M, Bozzalla-Cassione F, DePompa R, Saggiorato E, Bartolazzi A, Orlandi F, et al. Galectin-3 and HBME-1 expression in oncocytic cell tumors of the thyroid. Virchows Arch 445(2):183–8, 2004.

    Article  PubMed  CAS  Google Scholar 

  29. Mai KT, Bokhary R, Yazdi HM, Thomas J, Commons AS. Reduced HBME-1 immunoreactivity of papillary thyroid carcinoma and papillary thyroid carcinoma-related neoplastic lesions with Hurthle cell and/or apocrine-like changes. Histopathology 40(2):133–42, 2002.

    Article  PubMed  CAS  Google Scholar 

  30. Bartolazzi A, Bussolati G. Galectin-3 does not reliably distinguish benign from malignant thyroid neoplasms. Histopathology 48(2):212–3, 2006.

    Article  PubMed  CAS  Google Scholar 

  31. Mehrotra P, Okpokam A, Bouhaidar R, Johnson SJ, Wilson JA, Davies BR, et al. Galectin-3 does not reliably distinguish benign from malignant thyroid neoplasms. Histopathology 45(5):493–500, 2004.

    Article  PubMed  CAS  Google Scholar 

  32. Mills LJ, Poller DN, Yiangou C. Galectin-3 is not useful in thyroid FNA. Cytopathology 16(3):132–8, 2005.

    Article  PubMed  CAS  Google Scholar 

  33. Cvejic D, Savin S, Petrovic I, Paunovic I, Tatic S, Krgovic K, et al. Galectin-3 expression in papillary microcarcinoma of the thyroid. Histopathology 47(2):209–14, 2005.

    Article  PubMed  CAS  Google Scholar 

  34. Weber KB, Shroyer KR, Heinz DE, Nawaz S, Said MS, Haugen BR. The use of a combination of galectin-3 and thyroid peroxidase for the diagnosis and prognosis of thyroid cancer. Am J Clin Pathol 122(4):524–31, 2004.

    Article  PubMed  Google Scholar 

  35. Cvejic DS, Savin SB, Petrovic IM, Paunovic IR, Tatic SB, Havelka MJ. Galectin-3 expression in papillary thyroid carcinoma: relation to histomorphologic growth pattern, lymph node metastasis, extrathyroid invasion, and tumor size. Head Neck 27(12):1049–55, 2005.

    Article  PubMed  Google Scholar 

  36. Oestreicher-Kedem Y, Halpern M, Roizman P, Hardy B, Sulkes J, Feinmesser R, et al. Diagnostic value of galectin-3 as a marker for malignancy in follicular patterned thyroid lesions. Head Neck 26(11):960–6, 2004.

    Article  PubMed  Google Scholar 

  37. Gasbarri A, Sciacchitano S, Marasco A, Papotti M, Di Napoli A, Marzullo A, et al. Detection and molecular characterisation of thyroid cancer precursor lesions in a specific subset of Hashimoto’s thyroiditis. Br J Cancer 91(6):1096–104, 2004.

    PubMed  CAS  Google Scholar 

  38. Sahoo S, Hoda SA, Rosai J, DeLellis RA. Cytokeratin 19 immunoreactivity in the diagnosis of papillary thyroid carcinoma: a note of caution. Am J Clin Pathol 116(5):696–702, 2001.

    Article  PubMed  CAS  Google Scholar 

  39. Fusco A, Chiappetta G, Hui P, Garcia-Rostan G, Golden L, Kinder BK, et al. Assessment of RET/PTC oncogene activation and clonality in thyroid nodules with incomplete morphological evidence of papillary carcinoma: a search for the early precursors of papillary cancer. Am J Pathol 160(6):2157–67, 2002.

    PubMed  CAS  Google Scholar 

  40. Adeniran AJ, Zhu Z, Gandhi M, Steward DL, Fidler JP, Giordano TJ, et al. Correlation between genetic alterations and microscopic features, clinical manifestations, and prognostic characteristics of thyroid papillary carcinomas. Am J Surg Pathol 30(2):216–22, 2006.

    Article  PubMed  Google Scholar 

  41. Liu W, Asa SL, Ezzat S. 1alpha,25-Dihydroxyvitamin D3 targets PTEN-dependent fibronectin expression to restore thyroid cancer cell adhesiveness. Mol Endocrinol 19(9):2349–57, 2005.

    Article  PubMed  CAS  Google Scholar 

  42. Liu W, Wei W, Winer D, Bamberger AM, Bamberger C, Wagener C, et al. CEACAM1 impedes thyroid cancer growth but promotes invasiveness: a putative mechanism for early metastases. Oncogene 26(19):2747–58, 2007.

    Article  PubMed  CAS  Google Scholar 

  43. Rossi ED, Raffaelli M, Mule A, Miraglia A, Lombardi CP, Vecchio FM, et al. Simultaneous immunohistochemical expression of HBME-1 and galectin-3 differentiates papillary carcinomas from hyperfunctioning lesions of the thyroid. Histopathology 48(7):795–800, 2006.

    Article  PubMed  CAS  Google Scholar 

  44. Savin S, Cvejic D, Isic T, Petrovic I, Paunovic I, Tatic S, et al. Thyroid peroxidase immunohistochemistry in differential diagnosis of thyroid tumors. Endocr Pathol 17(1):53–60, 2006.

    Article  PubMed  CAS  Google Scholar 

  45. Finley DJ, Arora N, Zhu B, Gallagher L, Fahey TJ 3rd. Molecular profiling distinguishes papillary carcinoma from benign thyroid nodules. J Clin Endocrinol Metab 89(7):3214–23, 2004.

    Article  PubMed  CAS  Google Scholar 

  46. Rebelo S, Domingues R, Catarino AL, Mendonca E, Santos JR, Sobrinho L, et al. Immunostaining and RT-PCR: different approaches to search for RET rearrangements in patients with papillary thyroid carcinoma. Int J Oncol 23(4):1025–32, 2003.

    PubMed  CAS  Google Scholar 

  47. Rhoden KJ, Unger K, Salvatore G, Yilmaz Y, Vovk V, Chiappetta G, et al. RET/papillary thyroid cancer rearrangement in nonneoplastic thyrocytes: follicular cells of Hashimoto’s thyroiditis share low-level recombination events with a subset of papillary carcinoma. J Clin Endocrinol Metab 91(6):2414–23, 2006.

    Article  PubMed  CAS  Google Scholar 

  48. Nikiforov YE, Rowland JM, Bove KE, Monforte-Munoz H, Fagin JA. Distinct pattern of ret oncogene rearrangements in morphological variants of radiation-induced and sporadic thyroid papillary carcinomas in children. Cancer Res 57(9):1690–4, 1997.

    PubMed  CAS  Google Scholar 

  49. Chiappetta G, Toti P, Cetta F, Giuliano A, Pentimalli F, Amendola I, et al. The RET/PTC oncogene is frequently activated in oncocytic thyroid tumors (Hurthle cell adenomas and carcinomas), but not in oncocytic hyperplastic lesions. J Clin Endocrinol Metab 87(1):364–9, 2002.

    Article  PubMed  CAS  Google Scholar 

  50. Maxwell EL, Palme CE, Freeman J. Hurthle cell tumors: applying molecular markers to define a new management algorithm. Arch Otolaryngol Head Neck Surg 132(1):54–8, 2006.

    Article  PubMed  Google Scholar 

  51. Dailey ME, Lindsay S, Skahen R. Relation of thyroid neoplasms to Hashimoto disease of the thyroid gland. AMA Arch Surg 70(2):291–7, 1955.

    PubMed  CAS  Google Scholar 

  52. Larson SD, Jackson LN, Riall TS, Uchida T, Thomas RP, Qiu S, et al. Increased incidence of well-differentiated thyroid cancer associated with Hashimoto thyroiditis and the role of the PI3k/Akt pathway. J Am Coll Surg 204(5):764–73, 2007, discussion 773–5.

    Article  PubMed  Google Scholar 

  53. Xing M. BRAF mutation in thyroid cancer. Endocr Relat Cancer 12(2):245–62, 2005.

    Article  PubMed  CAS  Google Scholar 

  54. Ugolini C, Giannini R, Lupi C, Salvatore G, Miccoli P, Proietti A, et al. Presence of BRAF V600E in very early stages of papillary thyroid carcinoma. Thyroid 17(5):381–8, 2007.

    Article  PubMed  CAS  Google Scholar 

  55. Costa AM, Herrero A, Fresno MF, Heymann J, Alvarez JA, Cameselle-Teijeiro J, et al. BRAF mutation associated with other genetic events identifies a subset of aggressive papillary thyroid carcinoma. Clin Endocrinol (Oxf) 68(4):618–34, 2008.

    Article  CAS  Google Scholar 

  56. Zhu Z, Gandhi M, Nikiforova MN, Fischer AH, Nikiforov YE. Molecular profile and clinical-pathologic features of the follicular variant of papillary thyroid carcinoma. An unusually high prevalence of ras mutations. Am J Clin Pathol 120(1):71–7, 2003.

    Article  PubMed  CAS  Google Scholar 

  57. Kroll TG, Sarraf P, Pecciarini L, Chen CJ, Mueller E, Spiegelman BM, et al. PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected]. Science 289(5483):1357–60, 2000.

    Article  PubMed  CAS  Google Scholar 

  58. Castro P, Rebocho AP, Soares RJ, Magalhaes J, Roque L, Trovisco V, et al. PAX8-PPARgamma rearrangement is frequently detected in the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 91(1):213–20, 2006.

    Article  PubMed  CAS  Google Scholar 

  59. Nakamura T, Yana I, Kobayashi T, Shin E, Karakawa K, Fujita S, et al. p53 gene mutations associated with anaplastic transformation of human thyroid carcinomas. Jpn J Cancer Res 83(12):1293–8, 1992.

    PubMed  CAS  Google Scholar 

  60. Hunt JL, Tometsko M, LiVolsi VA, Swalsky P, Finkelstein SD, Barnes EL. Molecular evidence of anaplastic transformation in coexisting well-differentiated and anaplastic carcinomas of the thyroid. Am J Surg Pathol 27(12):1559–64, 2003.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylvia L. Asa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Serra, S., Asa, S.L. Controversies in Thyroid Pathology: The Diagnosis of Follicular Neoplasms. Endocr Pathol 19, 156–165 (2008). https://doi.org/10.1007/s12022-008-9031-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-008-9031-5

Keywords

Navigation