Skip to main content
Log in

Promoter hypermethylation profile of cell cycle regulator genes in pituitary adenomas

  • Original Paper
  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Abstract

Aberrant hypermethylation of CpG islands in the promoter region plays a causal role in the inactivation of various key genes involved in the cell cycle regulatory cascade, which could result in a loss of cell cycle control. The aim of the present study was to examine in more detail the prevalence and role of the promoter methylation of genes with a proven involvement in the cell cycle regulation of pituitary adenomas, since their tumorigenesis has not yet been clearly defined. We profiled the CpG island methylation status of a series of well-characterized cell cycle regulation genes: the RB1, p14 ARF, p15 INK4b, p16 INK4a, p21 Waf1/Cip1, p27 Kip1, and p73 genes, in 34 pituitary adenomas as determined by a methylation-specific polymerase chain reaction assay. Promoter hypermethylation of the RB1, p14 ARF, p15 INK4b, p16 INK4a, p21 Waf1/Cip1, p27 Kip1, and p73 genes was detected in 12 (35%), 2 (6%), 11 (32%), 20 (59%), 1 (3%), 0 (0%), and 4 (12%) of the adenomas, respectively. In total, 88% (30 of 34) of the adenomas displayed methylation of at least one of such cell cycle regulatory genes, especially methylation of the member genes of the RB1 pathway (29 of 34; 85%). Promoter hypermethylation of p15 INK4b coincided with RB1 and/or p16 INK4a methylation, whereas RB1 and p16 INK4a methylations tended to be mutually exclusive (p = 0.0048). Furthermore, promoter hypermethylations of p14 ARF, p21 Waf1/Cip1, and p73 (not belonging to the member genes of the RB1 pathway) were also coincident with RB1 and/or p16 INK4a methylation except in one p73 methylated case. In contrast, none of the clinicopathological features, including the cell proliferation index, was significantly correlated with any particular methylation status. Our results suggested that aberrant hypermethylation of the key cell cycle regulatory genes occurs at a relatively high frequency in pituitary adenomas, especially in RB1 pathway genes with promoter hypermethylation of the p16 INK4a gene being the most common deregulation. We further obtained evidence to indicate that RB1 and p16 INK4a methylations tended to be mutually exclusive, but did occasionally coincide with other cell cycle regulation gene methylations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alexander JM, Biller BMK, Bikkal H et al (1990) Clinically non-functioning pituitary tumors are monoclonal in origin. J Clin Invest 86:336–401

    PubMed  CAS  Google Scholar 

  2. Herman V, Fagin J, Gonsky R et al (1990) Clonal origins of pituitary adenomas. J Clin Endocrinol Metab 71:1427–1433

    Article  PubMed  CAS  Google Scholar 

  3. Shimon I, Melmed S (1997) Pituitary tumors pathogenesis. J Clin Endocrinol Metab 82:1675–1681

    Article  PubMed  CAS  Google Scholar 

  4. Serrano M, Hannon GJ, Beach D (1993) A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366:704–707

    Article  PubMed  CAS  Google Scholar 

  5. Hannon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-β-induced cell cycle arrest. Nature 371:257–261

    Article  PubMed  CAS  Google Scholar 

  6. Sherr CJ (1996) Cancer cell cycles. Science 274:1672–1677

    Article  PubMed  CAS  Google Scholar 

  7. Dulic V, Kaufmann WK, Wilson SJ (1994) p53-dependent inhibition of cyclin-dependent kinase activities in human fibroblasts during radiation-induced G1 arrest. Cell 76:1013–1023

    Article  PubMed  CAS  Google Scholar 

  8. Quelle DE, Zindy F, Ashmun RA et al (1995) Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell 83:993–1000

    Article  PubMed  CAS  Google Scholar 

  9. Kamijo T, Weber JD, Zambetti G et al (1998) Functional and physical interactions of the ARF tumor suppressor with p53 and Mdm2. Proc Natl Acad Sci USA 95:8292–8297

    Article  PubMed  CAS  Google Scholar 

  10. Pomerantz J, Schreiber-Agus N, Liegeois NJ et al (1998) The INK4a tumor suppressor gene product, p19Arf, interacts with MDM2 and neutralizes MDM2’s inhibition of p53. Cell 92:713–723

    Article  PubMed  CAS  Google Scholar 

  11. Zhang Y, Xiong Y, Yarbrough WG (1998) ARF promotes MDM2 degradation and stabilizes p53: ARF-INK4a locus deletion impairs both the Rb and p53 tumor suppression pathways. Cell 92:725–734

    Article  PubMed  CAS  Google Scholar 

  12. Esteller M, Corn PC, Baylin SB et al (2001) A gene hypermethylation profile of human cancer. Cancer Res 61:3225–3229

    PubMed  CAS  Google Scholar 

  13. Xu XL, Yu J, Zhang HY et al (2004) Methylation profile of the promoter CpG islands of 31 genes that may contribute to colorectal carcinogenesis. World J Gastroenterol 23:3441–3454

    Google Scholar 

  14. Kawamata N, Inagaki N, Mizumura S et al (2005) Methylation status analysis of cell cycle regulatory genes (p16INK4A, p15INK4B, p21Waf1/Cip1, p27Kip1 and p73) in natural killer cell disorders. Eur J Haematol 74:424–429

    Article  PubMed  CAS  Google Scholar 

  15. Ogino A, Yoshino A, Katayama Y et al (2005) The p15INK4b/p16INK4A/RB1 pathway is frequently deregulated in human pituitary adenomas. J Neuropathol Exp Neurol 64:398–403

    PubMed  CAS  Google Scholar 

  16. Brüstle O, Ohgaki H, Schmitt HP et al (1992) Primitive neuroectodermal tumors after prophylactic central nervous system irradiation in children: association with an activated K-ras gene. Cancer 69:2385–2392

    Article  PubMed  Google Scholar 

  17. Herman JG, Graff JR, Myöhänen S et al (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA 93:9821–9826

    Article  PubMed  CAS  Google Scholar 

  18. Nakamura M, Watanabe T, Klangby U et al (2001) p14ARF deletion and methylation in genetic pathways to glioblastomas. Brain Pathol 11:159–168

    Article  PubMed  CAS  Google Scholar 

  19. Watanabe T, Nakamura M, Yonekawa Y et al (2001) Promoter hypermethylation and homozygous deletion of the p14ARF and p16INK4a genes in oligodendrogliomas. Acta Neuropathol 101:185–189

    PubMed  CAS  Google Scholar 

  20. Watanabe T, Yokoo H, Yokoo M et al (2001) Concurrent inactivation of RB1 and TP53 pathways in anaplastic oligodendrogliomas. J Neuropathol Exp Neurol 60:1181–1189

    PubMed  CAS  Google Scholar 

  21. Watanabe T, Huang H, Nakamura M et al (2002) Methylation of the p73 gene in gliomas. Acta Neuropathol 104:357–362

    PubMed  CAS  Google Scholar 

  22. Watanabe T, Katayama Y, Yoshino A et al (2003) Deregulation of the TP53/p14ARF tumor suppressor pathway in low-grade diffuse astrocytomas and its influence on clinical course. Clin Cancer Res 9:4884–4890

    PubMed  CAS  Google Scholar 

  23. Yoshino A, Katayama Y, Fukushima T et al (2003) Telomerase activity in pituitary adenomas: significance of telomerase expression in predicting pituitary adenoma recurrence. J Neurooncol 63:155–162

    Article  PubMed  Google Scholar 

  24. Karp JE, Broder S (1995) Molecular foundations of cancer: new targets for intervention. Nat Med 1:309–320

    Article  PubMed  CAS  Google Scholar 

  25. Ng MHL, Chung YF, Lo KW et al (1997) Frequent hypermethylation of p16 and p15 genes in multiple myeloma. Blood 89:2500–2506

    PubMed  CAS  Google Scholar 

  26. Kamb A, Gruis NA, Weaver-Feldhaus J et al (1994) A cell cycle regulator potentially involved in the genesis of many tumor types. Science 264:436–440

    Article  PubMed  CAS  Google Scholar 

  27. Cairns P, Polascik TJ, Eby Y et al (1995) Frequency of homozygous deletion at p16/CDKN2 in primary human tumours. Nat Genet 11:210–212

    Article  PubMed  CAS  Google Scholar 

  28. Shapiro GI, Park JE, Edwards CD et al (1995) Multiple mechanisms of p16INK4A inactivation in non-small cell lung cancer cell lines. Cancer Res 55:6200–6209

    PubMed  CAS  Google Scholar 

  29. Ueki K, Ono Y, Hensen JW et al (1996) CDKN2/p16 or Rb alterations occur in the majority of glioblastomas and are inversely correlated. Cancer Res 56:150–153

    PubMed  CAS  Google Scholar 

  30. Woloschak M, Yu A, Xiao J et al (1996) Frequent loss of the p16INK4a gene product in pituitary tumors. Cancer Res 56:2493–2496

    PubMed  CAS  Google Scholar 

  31. Farrell WE, Simpson DJ, Bicknell JE et al (1997) Chromosome 9p deletions in invasive and non-invasive non-functional pituitary adenomas: the deleted region involves markers outside of the MTS1 and MTS2 gene. Cancer Res 57:2703–2709

    PubMed  CAS  Google Scholar 

  32. Yoshimoto K, Tanaka C, Yamada S et al (1997) Infrequent mutations of p16INK4A and p15INK4B genes in human pituitary adenomas. Eur J Endocrinol 136:74–80

    Article  PubMed  CAS  Google Scholar 

  33. Weinberg RA (1992) Tumor supressor genes. Science 254:1138–1146

    Article  Google Scholar 

  34. Benedict WF, Xu H, Hu S et al (1990) Role of the retinoblastoma gene in the initiation and progression of human cancer. J Clin Invest 85:988–993

    Article  PubMed  CAS  Google Scholar 

  35. Jacks T, Fazeli A, Schmitt EM et al (1992) Effects of an Rb mutation in the mouse. Nature 359:295–300

    Article  PubMed  CAS  Google Scholar 

  36. Hu N, Gutsmann A, Herbert DC et al (1994) Heterozygous Rb-1 delta 20/+ mice are predisposed to tumors of the pituitary gland with a nearly complete penetrance. Oncogene 9:1021–1027

    PubMed  CAS  Google Scholar 

  37. Cryns VL, Alexander JM, Klibanski A et al (1993) The retinoblastoma gene in human pituitary tumours. J Clin Endocrinol Metab 77:644–646

    Article  PubMed  CAS  Google Scholar 

  38. Woloschak M, Roberts JL, Post KD (1994) Loss of heterozygosity at the retinoblastoma locus in human pituitary tumors. Cancer 74:693–696

    Article  PubMed  CAS  Google Scholar 

  39. Zhu J, Leon SP, Beggs AH et al (1994) Human pituitary adenomas show no loss of heterozygosity at the retinoblastoma gene locus. J Clin Endocrinol Metab 78:922–927

    Article  PubMed  CAS  Google Scholar 

  40. Pei L, Melmed S, Scheithauer B et al (1995) Frequent loss of heterozygosity at the retinoblastoma susceptibility gene (RB) locus in aggressive pituitary tumors: evidence of a chromosome 13 tumor suppressor gene other than RB. Cancer Res 55:1613–1616

    PubMed  CAS  Google Scholar 

  41. Woloschak M, Yu A, Xiao J et al (1996) Abundance and state of phosphorylation of the Rb gene product in human pituitary tumors. Int J Cancer 67:16–19

    Article  PubMed  CAS  Google Scholar 

  42. Ohta T, Watanabe T, Katayama Y et al (2006) Aberrant promoter hypermethylation profile of cell cycle regulatory genes in malignant astrocytomas. Oncol Rep 16:957–963

    PubMed  CAS  Google Scholar 

  43. Fero ML, Rivkin M, Tasch M et al (1996) A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27kip1 deficient mice. Cell 85:733–744

    Article  PubMed  CAS  Google Scholar 

  44. Kiyokawa H, Kineman RD, Manova-Todorova KO et al (1996) Enhanced growth of mice lacking the cyclin-dependent kinase inhibitor function of p27Kip1. Cell 85:721–732

    Article  PubMed  CAS  Google Scholar 

  45. Nakayama K, Ishida N, Shirane M et al (1996) Mice lacking p27Kip1 display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors. Cell 85:707–720

    Article  PubMed  CAS  Google Scholar 

  46. Lloyd RV, Erickson LA, Jin L et al (1999) p27kip1: a multifunctional cyclin-dependent kinase inhibitor with prognostic significance in human cancers. Am J Pathol 54:313–323

    Google Scholar 

  47. Faglia G, Spada A (2001) Genesis of pituitary adenomas: state of the art. J Neurooncol 54:95–110

    Article  PubMed  CAS  Google Scholar 

  48. Lloyd RV (2001) Molecular pathology of pituitary adenomas. J Neurooncol 54:111–119

    Article  PubMed  CAS  Google Scholar 

  49. Dahia PL, Aguiar RC, Honegger J et al (1998) Mutation and expression analysis of the p27/kip1 gene in corticotrophin-secreting tumours. Oncogene 16:69–76

    Article  PubMed  CAS  Google Scholar 

  50. Ikeda H, Yoshimoto T, Shida N (1997) Molecular analysis of p21 and p27 genes in human pituitary adenomas. Br J Cancer 76:1119–1123

    PubMed  CAS  Google Scholar 

  51. Qian X, Jin L, Kulig E et al (1998) DNA methylation regulates p27kip1 expression in rodent pituitary cell lines. Am J Pathol 153:1475–1482

    PubMed  CAS  Google Scholar 

  52. Loda M, Cukor B, Tam SW et al (1997) Increased proteosome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinoma. Nat Med 3:231–234

    Article  PubMed  CAS  Google Scholar 

  53. Kaghad M, Bonnet H, Yang A et al (1997) Monoallelically expressed gene related to p53 at 1p36, a region frequently deleted in neuroblastoma and other human cancers. Cell 90:809–819

    Article  PubMed  CAS  Google Scholar 

  54. Jost CA, Marin MC, Kaelin WG Jr (1997) p73 is a simian (correction of human) p53-related protein that can induce apoptosis. Nature 389:191–194

    Article  PubMed  CAS  Google Scholar 

  55. Corn PG, Kuerbitz SJ, van Noesel MM et al (1999) Transcriptional silencing of the p73 gene in acute lymphoblastic leukemia and Burkitt’s lymphoma is associated with 5’CpG island methylation. Cancer Res 59:3352–3356

    PubMed  CAS  Google Scholar 

  56. Ichimiya S, Nimura Y, Kageyama H et al (1999) p73 at chromosome 1p36.3 is lost in advanced stage neuroblastoma but its mutation is infrequent. Oncogene 18:1061–1066

    Article  PubMed  CAS  Google Scholar 

  57. Kawano S, Miller CW, Gombart AF et al (1999) Loss of p73 gene expression in leukemias/lymphomas due to hypermethylation. Blood 94:1113–1120

    PubMed  CAS  Google Scholar 

  58. Bello MJ, De Campos JM, Isla A et al (2006) Promoter CpG methylation of multiple genes in pituitary adenomas: frequent involvement of caspase-8. Oncol Rep 15:443–448

    PubMed  CAS  Google Scholar 

  59. Palmero I, Peters G (1996) Perturbation of cell cycle regulations in human cancer. Cancer Surv 27:351–367

    PubMed  CAS  Google Scholar 

  60. Burns KL, Ueki K, Jhung SL (1998) Molecular genetic correlates of p16, cdk4, and pRb immunohistochemistry in glioblastomas. J Neuropathol Exp Neurol 57:122–130

    PubMed  CAS  Google Scholar 

  61. Hibberts NA, Simpson DJ, Bicknell JE (1999) Analysis of cyclin D1 (CCND1) allelic imbalance and overexpression in sporadic human pituitary tumours. Clin Cancer Res 5:2133–2139

    PubMed  CAS  Google Scholar 

  62. Xing EP, Nie Y, Song Y et al (1999) Mechanisms of inactivation of p14ARF, p15INK4b, and p16INK4a genes in human esophageal squamous cell carcinoma. Clin Cancer Res 5:2704–2713

    PubMed  CAS  Google Scholar 

  63. Garcia MJ, Martinez-Delgado B, Cebrian A et al (2002) Different incidence and pattern of p15INK4b and p16INK4a promoter region hypermethylation in Hodgkin’s and CD30-positive non-Hodgkin’s lymphomas. Am J Pathol 161:1007–1013

    PubMed  CAS  Google Scholar 

  64. Kwong J, Lo KW, To KF et al (2002) Promoter hypermethylation of multiple genes in nasopharyngeal carcinoma. Clin Cancer Res 8:131–137

    PubMed  CAS  Google Scholar 

  65. Herman JG, Civin CI, Issa JP et al (1997) Distinct patterns of inactivation of p15INK4b and p16INK4a characterize the major types of hematological malignancies. Cancer Res 57:837–841

    PubMed  CAS  Google Scholar 

  66. Christiansen DH, Andersen MK, Pedersen-Bjergaard J (2003) Methylation of p15INK4B is common, is associated with deletion of genes on chromosome arm 7q and predicts a poor prognosis in therapy-related myelodysplasia and acute myeloid leukemia. Leukemia 17:1813–1819

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsuo Yoshino.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshino, A., Katayama, Y., Ogino, A. et al. Promoter hypermethylation profile of cell cycle regulator genes in pituitary adenomas. J Neurooncol 83, 153–162 (2007). https://doi.org/10.1007/s11060-006-9316-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11060-006-9316-9

Keywords

Navigation