Skip to main content

Advertisement

Log in

An Analysis of Potential Surrogate Markers of Target-Specific Therapy in Archival Materials of Adrenocortical Carcinoma

  • Published:
Endocrine Pathology Aims and scope Submit manuscript

Abstract

Adrenocortical carcinoma (ACC) is a rare neoplasm but some of the cases are highly malignant. Clinical outcome of the patients with advanced ACC still remained poor or dismal despite recent development of aggressive antitumor therapies. Target-specific therapies have been developed in a number of human malignancies and resulted in therapeutic benefits in some cancer patients. However, these therapies are only effective in the cases in which corresponding targets are expressed in tumor tissues. Therefore, we evaluated expression of potential surrogate markers using immunohistochemistry in archival materials of adrenocortical carcinoma in order to explore the potential application of target specific therapies in ACC in this study. We immunolocalized ten established or potential surrogate markers of target-specific therapies, located in the Ras/extracellular signal-regulated kinase and phosphatidylinositol-3 kinase/Akt pathways, in 41 ACC cases, 54 adrenocortical adenoma (ACA) cases, and five nonpathological adrenal glands and correlated the findings with clinicopathological factors of the patients. Among these markers examined, only epidermal growth factor receptor (EGFR) was significantly more abundant in ACC than in ACA (P < 0.01). These findings suggest that the agents which specifically inhibit signal transductions through EGFR such as monoclonal antibodies against EGFR are considered to be worthwhile to be attempted in future clinical studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rescorla FJ. Malignant adrenal tumors. Semin Pediatr Surg 15:48–56, 2006. doi:10.1053/j.sempedsurg.2005.11.008.

    Article  PubMed  Google Scholar 

  2. Terzolo M, Angeli A, Fassnacht M, et al. Adjuvant mitotane treatment for adrenocortical carcinoma. N Engl J Med 356:2372–80, 2007. doi:10.1056/NEJMoa063360.

    Article  PubMed  CAS  Google Scholar 

  3. Viani GA, Afonso SL, Stefano EJ, De Fendi LI, Soares FV. Adjuvant trastuzumab in the treatment of her-2-positive early breast cancer: a meta-analysis of published randomized trials. BMC Cancer 7:153–63, 2007. doi:10.1186/1471-2407-7-153.

    Article  PubMed  CAS  Google Scholar 

  4. Thatcher N. The place of targeted therapy in the patient management of non-small cell lung cancer. Lung Cancer 57(Suppl 2):S18–23.11, 2007.

    Article  PubMed  Google Scholar 

  5. Bianco R, Melisi D, Ciardiello F, Tortora G. Key cancer cell signal transduction pathways as therapeutic targets. Eur J Cancer 42:290–4, 2006. doi:10.1016/j.ejca.2005.07.034.

    Article  PubMed  CAS  Google Scholar 

  6. Press MF, Lenz HJ. EGFR, HER2 and VEGF pathways: validated targets for cancer treatment. Drugs 64:2045–75, 2007.

    Article  Google Scholar 

  7. Weiss LM. Comparative histologic study of 43 metastasizing and nonmetastasizing adrenocortical tumors. Am J Surg Pathol 8:163–9, 1984. doi:10.1097/00000478-198403000-00001.

    Article  PubMed  CAS  Google Scholar 

  8. Sasano H, Suzuki T, Moriya T. Recent advances in histopathology and immunohistochemistry of adrenocortical carcinoma. Endocr Pathol 17:345–54, 2006. doi:10.1007/s12022-006-0006-0.

    Article  PubMed  CAS  Google Scholar 

  9. Olayioye MA, Neve RM, Lane HA, Hynes NE. The ErbB signaling network: receptor heterodimerization in development and cancer. EMBO J 19:3159–67, 2000. doi:10.1093/emboj/19.13.3159.

    Article  PubMed  CAS  Google Scholar 

  10. Ferrara N, Gerber HP, LeCouter J. The biology of VEGF and its receptors. Nat Med 9:669–76, 2003. doi:10.1038/nm0603-669.

    Article  PubMed  CAS  Google Scholar 

  11. Sebastian S, Settleman J, Reshkin SJ, Azzariti A, Bellizzi A, Paradiso A. The complexity of targeting EGFR signaling in cancer: from expression to turnover. Biochem Biophys Acta 1766:120–39, 2006.

    PubMed  CAS  Google Scholar 

  12. Moasser MM. Targeting the function of the HER2 oncogene in human cancer therapeutics. Oncogene 26:6577–92, 2007. doi:10.1038/sj.onc.1210478.

    Article  PubMed  CAS  Google Scholar 

  13. Roskoski R Jr. Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit Rev Oncol Hematol 62:179–213, 2007. doi:10.1016/j.critrevonc.2007.01.006.

    Article  PubMed  Google Scholar 

  14. Xia W, Mullin RJ, Keith BR, et al. Anti-tumor activity of GW572016: a dual tyrosine kinase inhibitor blocks EGF activation of EGFR/erbB2 and downstream Erk1/2 and AKT pathways. Oncogene 21:6255–63, 2002. doi:10.1038/sj.onc.1205794.

    Article  PubMed  CAS  Google Scholar 

  15. Stallone G, Schena A, Infante B, et al. Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med 352:1317–23, 2005. doi:10.1056/NEJMoa042831.

    Article  PubMed  CAS  Google Scholar 

  16. Duran I, Kortmansky J, Singh D, et al. A phase II clinical and pharmacodynamic study of temsirolimus in advanced neuroendocrine carcinomas. Br J Cancer 95:1148–54, 2006. doi:10.1038/sj.bjc.6603419.

    Article  PubMed  CAS  Google Scholar 

  17. Pearson G, Robinson F, Beers GT, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 22:153–83, 2001. doi:10.1210/er.22.2.153.

    Article  PubMed  CAS  Google Scholar 

  18. Brazil DP, Yang ZZ, Hemmings BA. Advances in protein kinase B signaling: AKTion on multiple fronts. Trends Biochem Sci 29:233–42, 2004. doi:10.1016/j.tibs.2004.03.006.

    Article  PubMed  CAS  Google Scholar 

  19. Gingras AC, Raught B, Sonenberg N. Regulation of translation initiation by FRAP/mTOR. Genes Dev 15:807–26, 2001. doi:10.1101/gad.887201.

    Article  PubMed  CAS  Google Scholar 

  20. Mamane Y, Petroulakis E, LeBacquer O, Sonenberg N. mTOR, translation initiation and cancer. Oncogene 25:6416–22, 2006. doi:10.1038/sj.onc.1209888.

    Article  PubMed  CAS  Google Scholar 

  21. Kaio E, Tanaka S, Kitadai Y, et al. Clinical significance of angiogenic factor expression at the deepest invasive site of advanced colorectal carcinoma. Oncology 64:61–73, 2003. doi:10.1159/000066511.

    Article  PubMed  CAS  Google Scholar 

  22. Derecskei K, Moldvay J, Bogos K, Tímár J. Protocol modifications influence the result of EGF receptor immunodetection by EGFR pharmDx in paraffin-embedded cancer tissues. Pathol Oncol Res 12:243–6, 2006.

    Article  PubMed  Google Scholar 

  23. Yamashita S, Suzuki S, Nomoto T, et al. Linkage and microarray analyses of susceptibility genes in ACI/Seg rats: a model for prostate cancers in the aged. Cancer Res 65:2610–6, 2005. doi:10.1158/0008-5472.CAN-04-2932.

    Article  PubMed  CAS  Google Scholar 

  24. Malik SN, Brattain M, Ghosh PM, et al. Immunohistochemical demonstration of phosphor-Akt in high Gleason grade prostate cancer. Clin Cancer Res 8:1168–71, 2002.

    PubMed  Google Scholar 

  25. Robb VA, Karbowniczek M, Klein-Szanto AJ, Henske EP. Activation of the mTOR signaling pathway in renal clear cell carcinoma. J Urol 177:346–52, 2007. doi:10.1016/j.juro.2006.08.076.

    Article  PubMed  Google Scholar 

  26. Cen L, Hsieh FC, Lin HJ, Chen CS, Qualman SJ, Lin J. PDK-1/AKT pathway as a novel therapeutic target in rhabdomyosarcoma cells using OSU-03012 compound. Br J Cancer 97:785–91, 2007. doi:10.1038/sj.bjc.6603952.

    Article  PubMed  CAS  Google Scholar 

  27. Miyata H, Chiang AC, Vinters HV. Insulin signaling pathways in cortical dysplasia and TSC-tubers: tissue microarray analysis. Ann Neurol 56:510–9, 2004. doi:10.1002/ana.20234.

    Article  PubMed  CAS  Google Scholar 

  28. Li X, Alafuzoff I, Soininen H, Winblad B, Pei JJ. Levels of mTOR and its downstream targets 4E-BP1, eEF2, and eEF2 kinase in relationships with tau in Alzheimer’s disease brain. FEBS J 272:4211–20, 2005. doi:10.1111/j.1742-4658.2005.04833.x.

    Article  PubMed  CAS  Google Scholar 

  29. Sasano H, Suzuki T, Shizawa S, Kato K, Nagura H. Transforming growth factor alpha, epidermal growth factor, and epidermal growth factor receptor expression in normal and diseased human adrenal cortex by immunohistochemistry and in situ hybridization. Mod Pathol 7:741–6, 1994.

    PubMed  CAS  Google Scholar 

  30. Loprevite M, Tiseo M, Chiaramondia M, et al. Buccal mucosa cells as in vivo model to evaluate gefitinib activity in patients with advanced non small cell lung cancer. Clin Cancer Res 13:6518–26, 2007. doi:10.1158/1078-0432.CCR-07-0805.

    Article  PubMed  CAS  Google Scholar 

  31. Yashiro T, Hara H, Fulton NC, Obara T, Kaplan EL. Point mutations of ras genes in human adrenal cortical tumors: absence in adrenocortical hyperplasia. World J Surg 18:455–61, 1994. doi:10.1007/BF00353735.

    Article  PubMed  CAS  Google Scholar 

  32. Lin SR, Tsai JH, Yang YC, Lee SC. Mutation of K-ras oncogene in human adrenal tumours in Taiwan. Br J Cancer 77:1060–5, 1998.

    PubMed  CAS  Google Scholar 

  33. Zacharieva S, Atanassova I, Orbetzova M, et al. Circulating vascular endothelial growth factor and active rennin concentrations and prostaglandin E2 urinary excretion in patients with adrenal tumors. Eur J Endocrinol 150:345–9, 2004. doi:10.1530/eje.0.1500345.

    Article  PubMed  CAS  Google Scholar 

  34. Lin F, Zhang PL, Yang XJ, Prichard JW, Lun M, Brown RE. Morphoproreomic and molecular concomitants of an overexpressed and activated mTOR pathway in renal cell carcinomas. Ann Clin Lab Sci 36:283–93, 2006.

    PubMed  CAS  Google Scholar 

  35. Molinolo AA, Heiwitt SM, Amornphimoltham P, et al. Dissecting the Akt/mammalian target of rapamycin signaling network: emerging results from the head and neck cancer tissue array initiative. Clin Cancer Res 13:4964–73, 2007. doi:10.1158/1078-0432.CCR-07-1041.

    Article  PubMed  CAS  Google Scholar 

  36. Pérez-Tenorio G, Alkhori L, Olsson B, et al. PIK3CA mutations and PTEN loss correlate with similar prognostic factors and are not mutually exclusive in breast cancer. Clin Cancer Res 13:3577–84, 2007. doi:10.1158/1078-0432.CCR-06-1609.

    Article  PubMed  CAS  Google Scholar 

  37. Schmitz KJ, Wohlschlaeger J, Alakus H, et al. Activation of extracellular regulated kinases (ERK1/2) but not AKT predicts poor prognosis in colorectal carcinoma and is associated with k-ras mutations. Virchows Arch 450:151–9, 2007. doi:10.1007/s00428-006-0342-y.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We appreciate Mr. Katsuhiko Ono, Ms. Toshie Suzuki, Ms. Miki Mori (Department of Pathology, Tohoku University School of Medicine), and Ms. Yuko Sagara (Department of Pediatric Surgery, Tohoku University School of Medicine) for skillful technical assistance.

Conflict of Interest

The authors indicated no potential conflict of interest and no financial interests relating to the material in the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hironobu Sasano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakamura, M., Miki, Y., Akahira, Ji. et al. An Analysis of Potential Surrogate Markers of Target-Specific Therapy in Archival Materials of Adrenocortical Carcinoma. Endocr Pathol 20, 17–23 (2009). https://doi.org/10.1007/s12022-009-9058-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12022-009-9058-2

Keywords

Navigation