Skip to main content
Log in

Point mutations of ras genes in human adrenal cortical tumors: Absence in adrenocortical hyperplasia

  • International Association of Endocrine Surgeons—Manuscripts Presented at the 35th World Congress of the International Society of Surgery, Hong Kong, August 1993
  • Published:
World Journal of Surgery Aims and scope Submit manuscript

Abstract

Point mutations of ras genes (K-, H-, and N-ras) at codons 12, 13, and 61 and of the Gi2α gene at codons 179 and 205, were studied in 56 primary adrenal cortical tumors and 6 adrenal cortical hyperplasias. Of 56 tumors, 24 were carcinomas and 32 were benign. The 24 carcinomas and 20 of the benign tumors were from American patients; the 12 remaining adenomas were from Japanese patients. Of the benign tumors 12 were cortisol-producing adenomas, 15 were aldosterone-producing adenomas, 3 were nonfunctioning adenomas, and 2 were adenomas that produced a virilizing syndrome. Tumor DNA obtained from archival formalin-fixed, paraffin-embedded tissue or fresh frozen tissue was amplified by polymerase chain reaction; and point mutations were detected by sequence-specific oligonucleotide hybridization. Activating ras mutations were found in 7 of 56 (12.5%) of all tumors: 3 of 24 (12.5%) carcinomas and 4 of 32 (12.5%) adenomas. Of adenomas from an American population, 4 of 20 (20%) exhibited positive ras mutations, whereas none was present in the Japanese tumors. All mutations detected were adenine to guanine transitions at the second position of N-ras codon 61, resulting in a conversion from glutamine to arginine. No mutations were found in K-ras or H-ras genes. Furthermore, no mutations of the Gi2α gene were identified. These findings demonstrate that N-ras mutations at codon 61 may contribute to the genesis of both benign and malignant human adrenal cortical tumors. Finally, no mutations of the ras or Gi2α genes were identified in hyperplastic adrenocortical tissues.

Résumé

On a étudié les mutations ponctuelles des gênes ras (K-, H-, et N-ras) au niveau des codons 12, 13 et 61 ainsi que des gênes Gi2α au niveau des codons 179 et 205 dans 56 tumeurs primitives et 6 cas d'hyperplasie de la corticosurrénale. Des 56 tumeurs, il y avait 24 cancers et 32 tumeurs bénignes. Les 24 cancers et 20 des tumeurs bénignes provenaient de patients d'origine américaine, alors que les autres tumeurs bénignes provenaient de patients japonais. Des tumeurs bénignes, 12 étaient des adénomes produisant le cortisol, 15 étaient des adénomes produisant l'aldostérone, 3 n'étaient pas sécretants et deux étaient des adénomes associés à un syndrome de virilisation. L'ADN tumoral obtenu sur des pièces par fixation à la paraffine et au formol a été amplifié par une réaction en chaîne polymérase et les mutations ponctuelles ont été détectées par la séquence spécifique d'hybridation d'oligonucléotides. Des mutations actives ont été retrouvées chez 7 parmi 56 (12.5%) tumeurs: 3 des 24 (12.5%) cancers et 4 des 32 (12.5%) adénomes. Parmi les adénomes de la population américaine, 4 sur 20 (20%) avaient des mutation ras+, alors qu'aucun des Japonais en avait. Toutes les mutations détectées étaient des substitutions d'adénine en guanine à la position du codon 61 N-ras, entrainant une conversion de glutamine en arginine. II n'y avait aucune mutation des gênes Gi2α. Ces résultats démontrent que les mutations N-ras au niveau du codon 61 peuvent être impliquées dans la genèse des tumeurs bénignes et malignes de la corticosurrénale. En revanche, aucune mutation des gênes Gi2α n'a été identifiée dans l'hyperplasie corticosur-rénale.

Resumen p Se estudiaron las mutaciones puntuales de los genes ras (K-, H-y N-ras) en los codones 12, 13 y 61 y del gen Gi2α en los codones 179 y 205 en 56 tumores adrenocorticales y en 6 hiperplasias suprarrenales. De los tumores, 24 eran carcinomas y 32 neoplasmas benignos. Los 24 carcinomas y 20 de los neoplasmas benignos eran de pacientes norteamericanos; los 12 adenomas restantes provenían de pacientes japoneses. Entre los tumores benignos, 12 eran adenomas productores de cortisol, 15 eran adenomas productores de aldosterona, 3 eran adenomas no funcionantes y 2 eran adenomas que habían producido un síndrome de virilización.

El ADN obtenido tejido fijado en formol, contenido en bloques de parafina o fresco congelado, fue amplificado por medio de la reacción en cadena de la polimerasa y se procedió a detectar las mutaciones puntuales mediante hibridación de secuencia específica de oligonucleótidos.

Se encontraron mutaciones ras activantes en 7 de 56 (12.5%) de la totalidad de los tumores: 3 de 24 (12.5%) carcinomas y 4 de 32 (12.5%) adenomas. Entre los adenomas de la población norteamericana, 4 de 20 (2%) exhibieron mutaciones ras positivas, en tanto que no se hallaron en los tumores de los pacientes japoneses. La totalidad de las mutaciones detectadas fueron transiciones adenina a guanina en la segunda posición del codón N-ras 61, resultante en la conversión de glutamina a arginina. No se hallaron mutaciones en los genes K-ras o H-ras; tampoco se identificaron mutaciones del gen Gi2α.

Tales hallazgos demuestran que las mutaciones N-ras en el codón 61 pueden contribuir a la génesis de los tumores suprarrenales, tanto de los benignos como de los malignos. Finalmente, no se detectaron mutaciones de los genes Gi2α en los tejidos suprarrenales hiperplásicos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bos, J.L.: ras Oncogenes in human cancer: a review. Cancer Res. 49:4682, 1989

    Google Scholar 

  2. Vogelstein, B., Fearon, E.R., Hamilton, S.R., et al.: Genetic alterations during colorectal tumor development. N. Engl. J. Med. 319:525, 1988

    Google Scholar 

  3. Burmer, G.C., Loeb, L.A.: Mutations in the KRAS2 oncogene during progressive stages of human colon carcinoma. Proc. Natl. Acad. Sci. U.S.A. 86:2403, 1989

    Google Scholar 

  4. Almoguera, C., Shibata, D., Forrester, K., Martin, J., Arnheim, N., Perucho, M.: Most human carcinomas of the exocrine pancreas contain mutant c-K-ras genes. Cell 53:549, 1988

    Google Scholar 

  5. Ohgaki, H., Kleihues, P., Heitz, P.U.: p53 Mutations in sporadic adrenocortical tumors. Int. J. Cancer 54:408, 1993

    Google Scholar 

  6. Pace, A.M., Wong, Y.H., Bourne, H.R.: A mutation of alpha subunit of Gi2 induces neoplastic transformation of Rat-1 cells. Proc. Natl. Acad. Sci. U.S.A. 88:7031, 1991

    Google Scholar 

  7. Hermouet, S., Merendino, J.J., Jr., Gutkind, J.S., Spiegel, A.M.: Activating and inactivating mutations of the alpha subunit of Gi2 protein have opposite effects on proliferation of NIH 3T3 cells. Proc. Natl. Acad. Sci. U.S.A. 88:10455, 1991

    Google Scholar 

  8. Gupta, S.K., Gallego, C., Lowndes, J.M., et al.: Analysis of the fibroblast transformation potential of GTPase-deficient gip2 oncogenes. Mol. Cell Biol. 12:190, 1992

    Google Scholar 

  9. Lyons, J., Landis, C.A., Harsh, G., et al.: Two G protein oncogenes in human endocrine tumors. Science 249:655, 1990

    Google Scholar 

  10. Reincke, M., Karl, M., Travis, W., Chrousos, G.: No Evidence for Oncogenic Mutations in Guanine Nucleotide-Binding Proteins of Human Adrenocortical Neoplasms. JCEM 77(6):1419, 1993

    Google Scholar 

  11. Goelz, S.E., Hamilton, S.R., Vogelstein, B.: Purification of DNA from formaldehyde-fixed and paraffin-embedded human tissue. Biochem. Biophys. Res. Commun. 130:118, 1985

    Google Scholar 

  12. Schark, C., Fulton, N., Jacoby, R.F., Westbrook, C.A., Straus, F.H., II, Kaplan, E.L.: N-ras 61 oncogene mutations in Hurthle cell tumors. Surgery 108:994, 1990

    Google Scholar 

  13. Neuman, W.L., Wasylyshyn, M.L., Jacoby, R., et al.: Evidence for a common molecular pathogenesis in colorectal, gastric, and pancreatic cancer. Genes Chromosomes Cancer 3:468, 1991

    Google Scholar 

  14. Yashiro, T., Fulton, N., Hara, H., et al.: Comparison of mutations of ras oncogene in human pancreatic exocrine and endocrine tumors. Surgery 114(4):758, 1993

    Google Scholar 

  15. Itoh, H., Toyama, R., Kozasa, T., Tsukamoto, T., Matsuoka, M., Kaziro, Y.: Presence of three distinct molecular species of Gi2 protein alpha subunit: structure of rat cDNA and human genomic DNAs. J. Biol. Chem. 263:6656, 1988

    Google Scholar 

  16. Yoshimoto, K., Iwahana, H., Fukada, A., et al.: ras Mutations in endocrine tumors: mutation detection by polymerase chain reaction-single strand conformation polymorphism. Jpn. J. Cancer Res. 83:1057, 1992

    Google Scholar 

  17. Lyons, J.: Analysis of ras gene point mutations by PCR and oligonucleotide hybridization. In PCR Protocols, M.A. Innis, D.H. Gelfand, J.J. Sninsky, T.J. White, editors. San Diego, Academic Press, 1990, pp. 386–391

    Google Scholar 

  18. Suzuki, Y., Orita, M., Shiraishi, M., Hayashi, K., Sekiya, T.: Detection of ras gene mutations in human lung cancers by single-strand conformation polymorphism analysis of polymerase chain reaction products. Oncogene 5:1037, 1990

    Google Scholar 

  19. Ushijima, T., Tsutsumi, M., Sakai, R., et al.: Ki-ras activation in pancreatic carcinomas of Syrian hamsters induced by N-nitrosobis(2-hydroxypropyl)amine. Jpn. J. Cancer Res. 82:965, 1991

    Google Scholar 

  20. Shi, Y., Zou, M., Schmidt, H., et al.: High rates of ras codon 61 mutation in thyroid tumors in an iodide-deficient area. Cancer Res. 51:2690, 1991

    Google Scholar 

  21. Lemoine, N.R., Mayall, E.S., Wylie, F.S., et al.: High frequency of ras oncogene activation in all stages of human thyroid tumorigenesis. Oncogene 4:159, 1989

    Google Scholar 

  22. Yano, T., Linehan, M., Anglard, P., et al.: Genetic change in human adrenocortical carcinomas. J. Natl. Cancer Inst. 81:518, 1989

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported in part by the Nathan and Frances Goldblatt Society for Cancer Research.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yashiro, T., Hara, H., Fulton, N.C. et al. Point mutations of ras genes in human adrenal cortical tumors: Absence in adrenocortical hyperplasia. World J. Surg. 18, 455–460 (1994). https://doi.org/10.1007/BF00353735

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00353735

Keywords

Navigation