Skip to main content
Log in

Insulin sensitivity and pancreatic β-cell function in patients with primary aldosteronism

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Background

Primary aldosteronism (PA) is associated with an increased risk for dysglycemia. However, the effects of hyperaldosteronism on insulin sensitivity and β-cell function are unclear.

Methods

Using a cross-sectional study design, we assessed insulin sensitivity and pancreatic β-cell function from an oral glucose tolerance test (OGTT) in patients from two cohorts: subjects with PA (n = 21) and essential hypertension control (EHC) subjects (n = 22). Age, sex, BMI, and mean arterial pressure adjusted measures of insulin sensitivity and β-cell function were compared between the groups.

Results

PA individuals were less insulin sensitive compared to EHC subjects (Quantitative insulin sensitivity check index [QUICKI]: 0.340 ± 0.006 vs. 0.374 ± 0.013, p < 0.001; Matsuda index: 4.14 ± 0.49 vs. 7.87 ± 1.42, p < 0.001; SI: 11.45 ± 4.85 vs. 21.23 ± 6.11 dL/kg/min per μU/mL, p = 0.02). The hepatic insulin resistance index (HIRI) was higher in PA subjects (PA: 5.61 ± 1.01 vs. EHC: 4.13 ± 0.61, p = 0.002). The insulinogenic index (IGI), an index of β-cell function was higher in the PA cohort (PA: 1.49 ± 0.27 vs. 1.11 ± 0.21 μU/mL/mg/dL, p = 0.03). However, the oral disposition index (DI) was similar between the groups (PA: 4.77 ± 0.73 vs. EHC: 5.46 ± 0.85, p = 0.42), which likely accounts for the similar glucose tolerance between the two cohorts, despite lower sensitivity.

Conclusions

In summary, insulin sensitivity is significantly lower in PA with an appropriately compensated β-cell function. These results suggest that excess aldosterone and/or other steroids in the context of PA may negatively affect insulin action without adversely impacting β-cell function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. F.T. Lee, D. Elaraj, Evaluation and management of primary hyperaldosteronism. Surg. Clin. North Am. 99(4), 731–745 (2019). https://doi.org/10.1016/j.suc.2019.04.010

    Article  PubMed  Google Scholar 

  2. G.L. Hundemer, Primary aldosteronism: cardiovascular outcomes pre- and post-treatment. Curr. Cardiol. Rep. 21(9), 93 (2019). https://doi.org/10.1007/s11886-019-1185-x

    Article  PubMed  Google Scholar 

  3. J.W. Conn, Hypertension, the potassium ion and impaired carbohydrate tolerance. N. Engl. J. Med. 273(21), 1135–1143 (1965). https://doi.org/10.1056/NEJM196511182732106

    Article  CAS  PubMed  Google Scholar 

  4. E. Fischer, C. Adolf, A. Pallauf, C. Then, M. Bidlingmaier, F. Beuschlein, J. Seissler, M. Reincke, Aldosterone excess impairs first phase insulin secretion in primary aldosteronism. J. Clin. Endocrinol. Metab. 98(6), 2513–2520 (2013). https://doi.org/10.1210/jc.2012-3934

    Article  CAS  PubMed  Google Scholar 

  5. C. Catena, R. Lapenna, S. Baroselli, E. Nadalini, G. Colussi, M. Novello, G. Favret, A. Melis, A. Cavarape, L.A. Sechi, Insulin sensitivity in patients with primary aldosteronism: a follow-up study. J. Clin. Endocrinol. Metab. 91(9), 3457–3463 (2006). https://doi.org/10.1210/jc.2006-0736

    Article  CAS  PubMed  Google Scholar 

  6. F. Fallo, F. Veglio, C. Bertello, N. Sonino, P. Della Mea, M. Ermani, F. Rabbia, G. Federspil, P. Mulatero, Prevalence and characteristics of the metabolic syndrome in primary aldosteronism. J. Clin. Endocrinol. Metab. 91(2), 454–459 (2006). https://doi.org/10.1210/jc.2005-1733

    Article  CAS  PubMed  Google Scholar 

  7. J.M. Connell, S.M. MacKenzie, E.M. Freel, R. Fraser, E. Davies, A lifetime of aldosterone excess: long-term consequences of altered regulation of aldosterone production for cardiovascular function. Endocr. Rev. 29(2), 133–154 (2008). https://doi.org/10.1210/er.2007-0030

    Article  CAS  PubMed  Google Scholar 

  8. G. Giacchetti, V. Ronconi, F. Turchi, L. Agostinelli, F. Mantero, S. Rilli, M. Boscaro, Aldosterone as a key mediator of the cardiometabolic syndrome in primary aldosteronism: an observational study. J. Hypertens. 25(1), 177–186 (2007). https://doi.org/10.1097/HJH.0b013e3280108e6f

    Article  CAS  PubMed  Google Scholar 

  9. J.M. Luther, Effects of aldosterone on insulin sensitivity and secretion. Steroids 91, 54–60 (2014). https://doi.org/10.1016/j.steroids.2014.08.016

    Article  CAS  PubMed  Google Scholar 

  10. V. Ronconi, F. Turchi, S. Rilli, D. Di Mattia, L. Agostinelli, M. Boscaro, G: Giacchetti, Metabolic syndrome in primary aldosteronism and essential hypertension: relationship to adiponectin gene variants. Nutr. Metab. Cardiovasc. Dis. 20(2), 93–100 (2010). https://doi.org/10.1016/j.numecd.2009.03.007

    Article  CAS  PubMed  Google Scholar 

  11. J.W. Funder, M. Reincke, Aldosterone: a cardiovascular risk factor? Biochim. Biophys. Acta 1802(12), 1188–1192 (2010). https://doi.org/10.1016/j.bbadis.2010.08.005

    Article  CAS  PubMed  Google Scholar 

  12. Z. Somloova, J. Widimsky Jr., J. Rosa, D. Wichterle, B. Strauch, O. Petrak, T. Zelinka, J. Vlkova, M. Masek, J. Dvorakova, R. Holaj, The prevalence of metabolic syndrome and its components in two main types of primary aldosteronism. J. Hum. Hypertens. 24(10), 625–630 (2010). https://doi.org/10.1038/jhh.2010.65

    Article  CAS  PubMed  Google Scholar 

  13. G. Colussi, C. Catena, R. Lapenna, E. Nadalini, A. Chiuch, L.A. Sechi, Insulin resistance and hyperinsulinemia are related to plasma aldosterone levels in hypertensive patients. Diabetes Care 30(9), 2349–2354 (2007). https://doi.org/10.2337/dc07-0525

    Article  CAS  PubMed  Google Scholar 

  14. G. Lastra, A. Whaley-Connell, C. Manrique, J. Habibi, A.A. Gutweiler, L. Appesh, M.R. Hayden, Y.Z. Wei, C. Ferrario, J.R. Sowers, Low-dose spironolactone reduces reactive oxygen species generation and improves insulin-stimulated glucose transport in skeletal muscle in the TG(mRen2)27 rat. Am. J. Physiol. Endocrinol. Metab. 295(1), E110–E116 (2008). https://doi.org/10.1152/ajpendo.00258.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. J. Selvaraj, S. Sathish, C. Mayilvanan, K. Balasubramanian, Excess aldosterone-induced changes in insulin signaling molecules and glucose oxidation in gastrocnemius muscle of adult male rat. Mol. Cell Biochem. 372(1-2), 113–126 (2013). https://doi.org/10.1007/s11010-012-1452-2

    Article  CAS  PubMed  Google Scholar 

  16. R. Urbanet, C. Pilon, A. Calcagno, A. Peschechera, E.L. Hubert, G. Giacchetti, C. Gomez-Sanchez, P. Mulatero, M. Toffanin, N. Sonino, M.C. Zennaro, F. Giorgino, R. Vettor, F. Fallo, Analysis of insulin sensitivity in adipose tissue of patients with primary aldosteronism. J. Clin. Endocrinol. Metab. 95(8), 4037–4042 (2010). https://doi.org/10.1210/jc.2010-0097

    Article  CAS  PubMed  Google Scholar 

  17. T. Wada, H. Kenmochi, Y. Miyashita, M. Sasaki, M. Ojima, M. Sasahara, D. Koya, H. Tsuneki, T. Sasaoka, Spironolactone improves glucose and lipid metabolism by ameliorating hepatic steatosis and inflammation and suppressing enhanced gluconeogenesis induced by high-fat and high-fructose diet. Endocrinology 151(5), 2040–2049 (2010). https://doi.org/10.1210/en.2009-0869

    Article  CAS  PubMed  Google Scholar 

  18. J. Selvaraj, T. Muthusamy, C. Srinivasan, K. Balasubramanian, Impact of excess aldosterone on glucose homeostasis in adult male rat. Clin. Chim. Acta 407(1-2), 51–57 (2009). https://doi.org/10.1016/j.cca.2009.06.030

    Article  CAS  PubMed  Google Scholar 

  19. G. Sindelka, J. Widimsky, T. Haas, M. Prazny, J. Hilgertova, J. Skrha, Insulin action in primary hyperaldosteronism before and after surgical or pharmacological treatment. Exp. Clin. Endocr. Diabetes 108(1), 21–25 (2000)

    CAS  Google Scholar 

  20. W. Chen, F. Li, C. He, Y. Zhu, W. Tan, Elevated prevalence of abnormal glucose metabolism in patients with primary aldosteronism: a meta-analysis. Ir. J. Med Sci. 183(2), 283–291 (2014). https://doi.org/10.1007/s11845-013-1007-x

    Article  CAS  PubMed  Google Scholar 

  21. D. Watanabe, M. Yatabe, A. Ichihara, Evaluation of insulin sensitivity and secretion in primary aldosteronism. Clin. Exp. Hypertens. 38(7), 613–617 (2016). https://doi.org/10.1080/10641963.2016.1182176

    Article  CAS  PubMed  Google Scholar 

  22. L.M. Mosso, C.A. Carvajal, A. Maiz, E.H. Ortiz, C.R. Castillo, R.A. Artigas, C.E. Fardella, A possible association between primary aldosteronism and a lower beta-cell function. J. Hypertens. 25(10), 2125–2130 (2007). https://doi.org/10.1097/HJH.0b013e3282861fa4

    Article  CAS  PubMed  Google Scholar 

  23. J. Widimsky, B. Strauch, G. Sindelka, J. Skrha, Can primary hyperaldosteronism be considered as a specific form of diabetes mellitus? Physiol. Res. 50(6), 603–607 (2001)

    PubMed  Google Scholar 

  24. M. Ishimori, N. Takeda, S. Okumura, T. Murai, H. Inouye, K. Yasuda, Increased insulin sensitivity in patients with aldosterone producing adenoma. Clin. Endocrinol. 41(4), 433–438 (1994). https://doi.org/10.1111/j.1365-2265.1994.tb02573.x

    Article  CAS  Google Scholar 

  25. L.A. Sechi, A. Melis, R. Tedde, Insulin hypersecretion: a distinctive feature between essential and secondary hypertension. Metabolism 41(11), 1261–1266 (1992). https://doi.org/10.1016/0026-0495(92)90019-7

    Article  CAS  PubMed  Google Scholar 

  26. G.M. Reaven, Insulin resistance/compensatory hyperinsulinemia, essential hypertension, and cardiovascular disease. J. Clin. Endocrinol. Metab. 88(6), 2399–2403 (2003). https://doi.org/10.1210/jc.2003-030087

    Article  CAS  PubMed  Google Scholar 

  27. J.W. Funder, R.M. Carey, F. Mantero, M.H. Murad, M. Reincke, H. Shibata, M. Stowasser, W.F. Young Jr, The management of primary aldosteronism: case detection, diagnosis, and treatment: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 101(5), 1889–1916 (2016). https://doi.org/10.1210/jc.2015-4061

    Article  CAS  PubMed  Google Scholar 

  28. C. Dalla Man, A. Caumo, C. Cobelli, The oral glucose minimal model: estimation of insulin sensitivity from a meal test. IEEE Trans. Biomed. Eng. 49(5), 419–429 (2002). https://doi.org/10.1109/10.995680

    Article  PubMed  Google Scholar 

  29. A. Caumo, R.N. Bergman, C. Cobelli, Insulin sensitivity from meal tolerance tests in normal subjects: a minimal model index. J. Clin. Endocrinol. Metab. 85(11), 4396–4402 (2000). https://doi.org/10.1210/jcem.85.11.6982

    Article  CAS  PubMed  Google Scholar 

  30. A. Katz, S.S. Nambi, K. Mather, A.D. Baron, D.A. Follmann, G. Sullivan, M.J. Quon, Quantitative insulin sensitivity check index: A simple, accurate method for assessing insulin sensitivity in humans. J. Clin. Endocr. Metab. 85(7), 2402–2410 (2000). https://doi.org/10.1210/jc.85.7.2402

    Article  CAS  PubMed  Google Scholar 

  31. M. Matsuda, R.A. DeFronzo, Insulin sensitivity indices obtained from oral glucose tolerance testing - Comparison with the euglycemic insulin clamp. Diabetes Care 22(9), 1462–1470 (1999). https://doi.org/10.2337/diacare.22.9.1462

    Article  CAS  PubMed  Google Scholar 

  32. R. Muniyappa, S.H. Tella, S. Sortur, R. Mszar, S. Grewal, B.S. Abel, S. Auh, D.C. Chang, J. Krakoff, M.C. Skarulis, Predictive accuracy of surrogate indices for hepatic and skeletal muscle insulin sensitivity. J. Endocr. Soc. 3(1), 108–118 (2019). https://doi.org/10.1210/js.2018-00206

    Article  CAS  PubMed  Google Scholar 

  33. M.A. Abdul-Ghani, M. Matsuda, B. Balas, R.A. DeFronzo, Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care 30(1), 89–94 (2007). https://doi.org/10.2337/dc06-1519

    Article  CAS  PubMed  Google Scholar 

  34. K.M. Utzschneider, R.L. Prigeon, M.V. Faulenbach, J. Tong, D.B. Carr, E.J. Boyko, D.L. Leonetti, M.J. McNeely, W.Y. Fujimoto, S.E. Kahn, Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care 32(7), 1355–1355 (2009)

    Article  CAS  Google Scholar 

  35. J.L. Santos, I. Yevenes, L.R. Cataldo, M. Morales, J. Galgani, C. Arancibia, J. Vega, P. Olmos, M. Flores, J.P. Valderas, F. Pollak, Development and assessment of the disposition index based on the oral glucose tolerance test in subjects with different glycaemic status. J. Physiol. Biochem. 72(2), 121–131 (2016). https://doi.org/10.1007/s13105-015-0458-0

    Article  CAS  PubMed  Google Scholar 

  36. J.F. Ndisang, A. Jadhav, The heme oxygenase system attenuates pancreatic lesions and improves insulin sensitivity and glucose metabolism in deoxycorticosterone acetate hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 298(1), R211–R223 (2010). https://doi.org/10.1152/ajpregu.91000.2008

    Article  CAS  PubMed  Google Scholar 

  37. J. Pierluissi, F.O. Navas, S.J. Ashcroft, Effect of adrenal steroids on insulin release from cultured rat islets of Langerhans. Diabetologia 29(2), 119–121 (1986). https://doi.org/10.1007/BF00456122

    Article  CAS  PubMed  Google Scholar 

  38. J.C. Henquin, A.E. Lambert, Cationic environment and dynamics of insulin secretion. II Effect of a high concentration of potassium. Diabetes 23(12), 933–942 (1974). https://doi.org/10.2337/diab.23.12.933

    Article  CAS  PubMed  Google Scholar 

  39. J.M. Luther, P. Luo, M.T. Kreger, M. Brissova, C. Dai, T.T. Whitfield, H.S. Kim, D.H. Wasserman, A.C. Powers, N.J. Brown, Aldosterone decreases glucose-stimulated insulin secretion in vivo in mice and in murine islets. Diabetologia 54(8), 2152–2163 (2011). https://doi.org/10.1007/s00125-011-2158-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. J.R. Sowers, A. Whaley-Connell, M. Epstein, Narrative review: the emerging clinical implications of the role of aldosterone in the metabolic syndrome and resistant hypertension. Ann. Intern. Med. 150(11), 776–783 (2009). https://doi.org/10.7326/0003-4819-150-11-200906020-00005

    Article  PubMed  PubMed Central  Google Scholar 

  41. E.J. Barrett, E.M. Eggleston, A.C. Inyard, H. Wang, G. Li, W. Chai, Z. Liu, The vascular actions of insulin control its delivery to muscle and regulate the rate-limiting step in skeletal muscle insulin action. Diabetologia 52(5), 752–764 (2009). https://doi.org/10.1007/s00125-009-1313-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. G. Iacobellis, L. Petramala, D. Cotesta, M. Pergolini, L. Zinnamosca, R. Cianci, G. De Toma, S. Sciomer, C: Letizia, Adipokines and cardiometabolic profile in primary hyperaldosteronism. J. Clin. Endocrinol. Metab. 95(5), 2391–2398 (2010). https://doi.org/10.1210/jc.2009-2204

    Article  CAS  PubMed  Google Scholar 

  43. C. Letizia, L. Petramala, C.R. Di Gioia, C. Chiappetta, L. Zinnamosca, C. Marinelli, G. Iannucci, A. Ciardi, G. De Toma, G. Iacobellis, Leptin and adiponectin mRNA expression from the adipose tissue surrounding the adrenal neoplasia. J. Clin. Endocrinol. Metab. 100(1), E101–E104 (2015). https://doi.org/10.1210/jc.2014-2274

    Article  CAS  PubMed  Google Scholar 

  44. J. Irita, T. Okura, S. Manabe, M. Kurata, K. Miyoshi, S. Watanabe, T. Fukuoka, J. Higaki, Plasma osteopontin levels are higher in patients with primary aldosteronism than in patients with essential hypertension. Am. J. Hypertens. 19(3), 293–297 (2006). https://doi.org/10.1016/j.amjhyper.2005.08.019

    Article  CAS  PubMed  Google Scholar 

  45. G. Giacchetti, V. Ronconi, F. Turchi, L. Agostinelli, F. Mantero, S. Rilli, M. Boscaro, Aldosterone as a key mediator of the cardiometabolic syndrome in primary aldosteronism: an observational study. J. Hypertens. 25(1), 177–186 (2007). https://doi.org/10.1097/HJH.0b013e3280108e6f

    Article  CAS  PubMed  Google Scholar 

  46. L. Petramala, P. Pignatelli, R. Carnevale, L. Zinnamosca, C. Marinelli, A. Settevendemmie, A. Concistre, G. Tonnarini, G. De Toma, F. Violi, C. Letizia, Oxidative stress in patients affected by primary aldosteronism. J. Hypertens. 32(10), 2022–2029 (2014). https://doi.org/10.1097/HJH.0000000000000284. discussion 2029

    Article  CAS  PubMed  Google Scholar 

  47. R. Yamashita, T. Kikuchi, Y. Mori, K. Aoki, Y. Kaburagi, K. Yasuda, H. Sekihara, Aldosterone stimulates gene expression of hepatic gluconeogenic enzymes through the glucocorticoid receptor in a manner independent of the protein kinase B cascade. Endocr. J. 51(2), 243–251 (2004). https://doi.org/10.1507/endocrj.51.243

    Article  CAS  PubMed  Google Scholar 

  48. G. Liu, M. Grifman, B. Keily, J.E. Chatterton, F.W. Staal, Q.X. Li, Mineralocorticoid receptor is involved in the regulation of genes responsible for hepatic glucose production. Biochem. Biophys. Res. Commun. 342(4), 1291–1296 (2006). https://doi.org/10.1016/j.bbrc.2006.02.065

    Article  CAS  PubMed  Google Scholar 

  49. J.W. Rowe, J.D. Tobin, R.M. Rosa, R. Andres, Effect of experimental potassium deficiency on glucose and insulin metabolism. Metabolism 29(6), 498–502 (1980). https://doi.org/10.1016/0026-0495(80)90074-8

    Article  CAS  PubMed  Google Scholar 

  50. F. Fallo, P. Della Mea, N. Sonino, C. Bertello, M. Ermani, R. Vettor, F. Veglio, P. Mulatero, Adiponectin and insulin sensitivity in primary aldosteronism. Am. J. Hypertens. 20(8), 855–861 (2007). https://doi.org/10.1016/j.amjhyper.2007.03.012

    Article  CAS  PubMed  Google Scholar 

  51. C. Cobelli, C. Dalla Man, G. Toffolo, R. Basu, A. Vella, R. Rizza, The oral minimal model method. Diabetes 63(4), 1203–1213 (2014). https://doi.org/10.2337/db13-1198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. G.K. Adler, G.R. Murray, A.F. Turcu, H. Nian, C. Yu, C.C. Solorzano, R. Manning, D. Peng, J.M. Luther, Primary aldosteronism decreases insulin secretion and increases insulin clearance in humans. Hypertension 75(5), 1251–1259 (2020). https://doi.org/10.1161/HYPERTENSIONAHA.119.13922

    Article  CAS  PubMed  Google Scholar 

  53. M. Han, X. Cao, C. Zhao, L. Yang, N. Yin, P. Shen, J. Zhang, F. Gao, Y. Ren, D. Liang, J. Yang, Y. Zhang, Y. Liu, Assessment of glycometabolism impairment and glucose variability using flash glucose monitoring system in patients with adrenal diseases. Front. Endocrinol. 11(759), 544752 (2020). https://doi.org/10.3389/fendo.2020.544752

Download references

Funding

This work was supported in part by the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) and The Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), Bethesda, Maryland.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ranganath Muniyappa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grewal, S., Fosam, A., Chalk, L. et al. Insulin sensitivity and pancreatic β-cell function in patients with primary aldosteronism. Endocrine 72, 96–103 (2021). https://doi.org/10.1007/s12020-020-02576-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02576-y

Keywords

Navigation