Skip to main content

Advertisement

Log in

Meta-analytic evidence for increased low-grade systemic inflammation and oxidative stress in hypothyroid patients. Can levothyroxine replacement therapy mitigate the burden?

  • Meta-Analysis
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

This series of meta-analyses were aimed to elucidate the impact of hypothyroidism on low-grade systemic inflammation and oxidative stress assessed by C-reactive protein (CRP) and malondialdehyde (MDA) respectively; and to evaluate the effect of levothyroxine replacement therapy (LRT) on those outcomes.

Methods

PubMed database and the key studies references were searched prior to March 3, 2020. Data on serum or plasma CRP and MDA levels in SHT (subclinical) and/or OHT (overt) hypothyroid patients and controls were extracted to compute overall standardized mean differences (SMD) by the random-effects model.

Results

A total of 93 studies were entered into analyses and ten main meta-analyses were performed. OHT (SMD = 0.72 [0.39; 1.04], k = 35), SHT (SMD = 1.58 [0.78; 2.38], k = 56) and even mild SHT (TSH < 10 mU/L, SMD = 2.19 [0.02; 4.37], k = 13) proved to have a detrimental effect on CRP levels. LRT showed a favorable effect on CRP levels, particularly in OHT (SMD = −0.30 [−0.57; −0.02], k = 17). Increased levels of MDA were also found, especially in OHT (SMD = 2.49 [0.66; 4.31], k = 13). LRT may also improve MDA levels; however future studies would further validate the advantageous effect of LRT in hypothyroidism. Heterogeneity primarily originated from different study designs and geographic locations.

Conclusion

Overall, these meta-analyses reveal that screening for hs-CRP and MDA in hypothyroid patients as simple biomarkers of low-grade systemic inflammation and oxidative stress may become a useful tool to identify those at increased risk who may benefit most from early interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

Data are available from PubMed.

Code availability

Analyses were executed in R versión 3.6.3 by using meta, metafor and dmetar R packages. Scrips are available under request.

Abbreviations

CRP:

C-reactive protein

CV:

cardiovascular

HT:

hypothyroidism

LRT:

levothyroxine replacement therapy

MDA:

malondialdehyde

OHT:

overt hypothyroidism

SHT:

subclinical hypothyroidism

SMD:

standardized mean difference

TBARS:

thiobarbituric-acid-reactive substances

TSH:

thyrotropin or thyroid-stimulating hormone

References

  1. C.G. Roberts, P.W. Ladenson, Hypothyroidism. Lancet 363, 793–803 (2004). https://doi.org/10.1016/S0140-6736(04)15696-1

    Article  CAS  PubMed  Google Scholar 

  2. B. Biondi, A.R. Cappola, D.S. Cooper, Subclinical hypothyroidism. JAMA 322, 153 (2019). https://doi.org/10.1001/jama.2019.9052

    Article  CAS  PubMed  Google Scholar 

  3. F. Magri, L. Chiovato, L. Croce, M. Rotondi, Thyroid hormone therapy for subclinical hypothyroidism. Endocrine 66, 27–34 (2019). https://doi.org/10.1007/s12020-019-02039-z

    Article  CAS  PubMed  Google Scholar 

  4. N. Gong, C. Gao, X. Chen, Y. Fang, L. Tian, Endothelial function in patients with subclinical hypothyroidism: a meta-analysis. Horm. Metab. Res. 51, 691–702 (2019). https://doi.org/10.1055/a-1018-9564

    Article  CAS  PubMed  Google Scholar 

  5. K. Yao, T. Zhao, L. Zeng, J. Yang, Y. Liu, Q. He, X. Zou, Non-invasive markers of cardiovascular risk in patients with subclinical hypothyroidism: a systematic review and meta-analysis of 27 case control studies. Sci. Rep. 8, 4579 (2018). https://doi.org/10.1038/s41598-018-22897-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. N. Gao, W. Zhang, Y. Zhang, Q. Yang, S. Chen, Carotid intima-media thickness in patients with subclinical hypothyroidism: a meta-analysis. Atherosclerosis 227, 18–25 (2013). https://doi.org/10.1016/j.atherosclerosis.2012.10.070

    Article  CAS  PubMed  Google Scholar 

  7. Y. Zhou, Y. Chen, X. Cao, C. Liu, C. Liu, Y. Xie, Association between plasma homocysteine status and hypothyroidism: a meta-analysis. Int. J. Clin. Exp. Med. 7, 4544–4553 (2014)

    PubMed  PubMed Central  Google Scholar 

  8. R. Marfella, F. Ferraraccio, M.R. Rizzo, M. Portoghese, M. Barbieri, C. Basilio, R. Nersita, L.I. Siniscalchi, F.C. Sasso, I. Ambrosino, M. Siniscalchi, L. Maresca, C. Sardu, G. Amato, G. Paolisso, C. Carella, Innate immune activity in plaque of patients with untreated and L-thyroxine-treated subclinical hypothyroidism. J. Clin. Endocrinol. Metab. 96, 1015–1020 (2011). https://doi.org/10.1210/jc.2010-1382

    Article  CAS  PubMed  Google Scholar 

  9. M.B. Pepys, G.M. Hirschfield, C-reactive protein: a critical update. J. Clin. Investig. 111, 1805–1812 (2003). https://doi.org/10.1172/JCI18921

    Article  CAS  PubMed  Google Scholar 

  10. S. Kaptoge, E. Di Angelantonio, G. Lowe, M.B. Pepys, S.G. Thompson, R. Collins, J. Danesh, R.W. Tipping, C.E. Ford, S.L. Pressel, G. Walldius, I. Jungner, A.R. Folsom, L. Chambless, C.M. Ballantyne, D. Panagiotakos, C. Pitsavos, C. Chrysohoou, C. Stefanadis, M.W. Knuiman, U. Goldbourt, M. Benderly, D. Tanne, P. Whincup, S.G. Wannamethee, R.W. Morris, S. Kiechl, J. Willeit, A. Mayr, G. Schett, N. Wald, S. Ebrahim, D. Lawlor, J. Yarnell, J. Gallacher, E. Casiglia, V. Tikhonoff, P.J. Nietert, S.E. Sutherland, D.L. Bachman, J.E. Keil, M. Cushman, B.M. Psaty, R. Tracy, A. Tybjærg-Hansen, B.G. Nordestgaard, J. Zacho, R. Frikke-Schmidt, S. Giampaoli, L. Palmieri, S. Panico, D. Vanuzzo, L. Pilotto, A.G. De La Cámara, J.A. Gómez Gerique, L. Simons, J. McCallum, Y. Friedlander, F.G.R. Fowkes, A. Lee, J. Taylor, J.M. Guralnik, C.L. Phillips, R.B. Wallace, D.G. Blazer, K.T. Khaw, H. Brenner, E. Raum, H. Müller, D. Rothenbacher, J.H. Jansson, P. Wennberg, A. Nissinen, C. Donfrancesco, K. Harald, P. Jousilahti, E. Vartiainen, M. Woodward, R.B. D’Agostino, P.A. Wolf, R.S. Vasan, E.J. Benjamin, E.M. Bladbjerg, T. Jørgensen, V. Salomaa, J. Jespersen, R. Dankner, A. Chetrit, F. Lubin, A. Rosengren, L. Wilhelmsen, G. Lappas, H. Eriksson, C. Björkelund, L. Lissner, C. Bengtsson, P. Cremer, D. Nagel, R.S. Tilvis, T.E. Strandberg, Y. Kiyohara, H. Arima, Y. Doi, T. Ninomiya, B. Rodriguez, J. Dekker, G. Nijpels, C.D.A. Stehouwer, E. Rimm, J.K. Pai, S. Sato, H. Iso, A. Kitamura, H. Noda, J.T. Salonen, K. Nyyssönen, T.P. Tuomainen, J.A. Laukkanen, D.J.H. Deeg, M.A. Bremmer, T.W. Meade, J.A. Cooper, B. Hedblad, G. Berglund, G. Engström, W.M.M. Verschuren, A. Blokstra, S. Shea, A. Döring, W. Koenig, C. Meisinger, H.B. Bueno-De-Mesquita, L.H. Kuller, G. Grandits, R. Selmer, A. Tverdal, W. Nystad, R.F. Gillum, M. Mussolino, S. Hankinson, J.E. Manson, C. Knottenbelt, K.A. Bauer, K. Davidson, S. Kirkland, J. Shaffer, M.R. Korin, Y. Naito, I. Holme, H. Nakagawa, K. Miura, P. Ducimetiere, X. Jouven, G. Luc, C.J. Crespo, M.R. Garcia-Palmieri, P. Amouyel, D. Arveiler, A. Evans, J. Ferrieres, H. Schulte, G. Assmann, C.J. Packard, N. Sattar, R.G. Westendorp, B.M. Buckley, B. Cantin, B. Lamarche, J.P. Després, G.R. Dagenais, E. Barrett-Connor, D.L. Wingard, R.R. Bettencourt, V. Gudnason, T. Aspelund, G. Sigurdsson, B. Thorsson, M. Trevisan, J. Witteman, I. Kardys, M.M.B. Breteler, A. Hofman, H. Tunstall-Pedoe, R. Tavendale, B.V. Howard, Y. Zhang, L. Best, J. Umans, Y. Ben-Shlomo, G. Davey-Smith, A. Onat, I. Njølstad, E.B. Mathiesen, M.L. Løchen, T. Wilsgaard, E. Ingelsson, S. Basu, T. Cederholm, L. Byberg, J.M. Gaziano, M. Stampfer, P.M. Ridker, H. Ulmer, G. Diem, H. Concin, A. Tosetto, F. Rodeghiero, S. Wassertheil-Smoller, M. Marmot, R. Clarke, A. Fletcher, E. Brunner, M. Shipley, J. Buring, J. Shepherd, S. Cobbe, I. Ford, M. Robertson, Y. He, A. Marin Ibañez, E.J.M. Feskens, M. Walker, S. Watson, S. Erqou, S. Lewington, L. Pennells, P.L. Perry, K.K. Ray, N. Sarwar, M. Alexander, A. Thompson, I.R. White, A.M. Wood, C-reactive protein concentration and risk of coronary heart disease, stroke, and mortality: an individual participant meta-analysis. Lancet 375, 132–140 (2010). https://doi.org/10.1016/S0140-6736(09)61717-7

    Article  CAS  PubMed  Google Scholar 

  11. J. Danesh, J.G. Wheeler, G.M. Hirschfield, S. Eda, G. Eiriksdottir, A. Rumley, G.D.O. Lowe, M.B. Pepys, V. Gudnason, C-reactive protein and other circulating markers of inflammation in the prediction of coronary heart disease. N. Engl. J. Med. 350, 1387–1397 (2004). https://doi.org/10.1056/NEJMoa032804

    Article  CAS  PubMed  Google Scholar 

  12. M. Christ-Crain, C. Meier, M. Guglielmetti, P.R. Huber, W. Riesen, J.-J. Staub, B. Müller, Elevated C-reactive protein and homocysteine values: cardiovascular risk factors in hypothyroidism? A cross-sectional and a double-blind, placebo-controlled trial. Atherosclerosis 166, 379–386 (2003). https://doi.org/10.1016/S0021-9150(02)00372-6

    Article  CAS  PubMed  Google Scholar 

  13. M. Frisard, E. Ravussin, Energy metabolism and oxidative stress: impact on the metabolic syndrome and the aging process. Endocrine 29, 27–32 (2006). https://doi.org/10.1385/ENDO:29:1:27

    Article  CAS  PubMed  Google Scholar 

  14. M.F. Walter, R.F. Jacob, B. Jeffers, M.M. Ghadanfar, G.M. Preston, J. Buch, R.P. Mason, Serum levels of thiobarbituric acid reactive substances predict cardiovascular events in patients with stable coronary artery disease. J. Am. Coll. Cardiol. 44, 1996–2002 (2004). https://doi.org/10.1016/j.jacc.2004.08.029

    Article  CAS  PubMed  Google Scholar 

  15. W. He, S. Li, J. Zhang, J. Zhang, K. Mu, X. Li, Effect of levothyroxine on blood pressure in patients with subclinical hypothyroidism: a systematic review and meta-analysis. Front. Endocrinol. 9 (2018). https://doi.org/10.3389/fendo.2018.00454

  16. X. Li, Y. Wang, Q. Guan, J. Zhao, L. Gao, The lipid-lowering effect of levothyroxine in patients with subclinical hypothyroidism: a systematic review and meta-analysis of randomized controlled trials. Clin. Endocrinol. 87, 1–9 (2017). https://doi.org/10.1111/cen.13338

    Article  CAS  Google Scholar 

  17. B. Swaid, B. Kheiri, S. Sundus, M. Shah Miran, T. Haykal, Y. Zayed, G. Bachuwa, The effect of levothyroxine treatment in individuals with subclinical hypothyroidism on surrogate markers of atherosclerosis: a meta-analysis of randomized controlled trials. J. Community Hosp. Intern. Med. Perspect. 9, 305–309 (2019). https://doi.org/10.1080/20009666.2019.1625704

    Article  PubMed  PubMed Central  Google Scholar 

  18. A.L. Burgueño, Y.R. Juarez, A.M. Genaro, M.L. Tellechea, Systematic review and meta-analysis on the relationship between prenatal stress and metabolic syndrome intermediate phenotypes. Int. J. Obes. 44, 1–12 (2020). https://doi.org/10.1038/s41366-019-0423-z

    Article  Google Scholar 

  19. M.L. Tellechea, C.J. Pirola, The impact of hypertension on leukocyte telomere length: a systematic review and meta-analysis of human studies. J. Hum. Hypertens. 31, 99–105 (2017). https://doi.org/10.1038/jhh.2016.45

    Article  CAS  PubMed  Google Scholar 

  20. G.J. Blake, P.M. Ridker, Inflammatory bio-markers and cardiovascular risk prediction. J. Intern. Med. 252, 283–294 (2002). https://doi.org/10.1046/j.1365-2796.2002.01019.x

    Article  CAS  PubMed  Google Scholar 

  21. C. Zhu, J. Gao, F. Mei, L. Lu, D. Zhou, S. Qu, Reduction in thyroid-stimulating hormone correlated with improved inflammation markers in Chinese patients with morbid obesity undergoing laparoscopic sleeve gastrectomy. Obes. Surg. 29, 3954–3965 (2019). https://doi.org/10.1007/s11695-019-04063-4

    Article  PubMed  Google Scholar 

  22. P.S. Tayde, N.M. Bhagwat, P. Sharma, B. Sharma, P.P. Dalwadi, A. Sonawane, A. Subramanyam, M. Chadha, P.K. Varthakavi, Hypothyroidism and depression: are cytokines the link? Indian. J. Endocrinol. Metab. 21, 886–892 (2017). https://doi.org/10.4103/ijem.IJEM_265_17

    Article  CAS  Google Scholar 

  23. E.E. Türemen, B. Çetinarslan, T. Şahin, Z. Cantürk, I. Tarkun, Endothelial dysfunction and low grade chronic inflammation in subclinical hypothyroidism due to autoimmune thyroiditis. Endocr. J. 58, 349–354 (2011). https://doi.org/10.1507/endocrj.K10E-333

    Article  PubMed  Google Scholar 

  24. S. Taddei, N. Caraccio, A. Virdis, A. Dardano, D. Versari, L. Ghiadoni, E. Ferrannini, A. Salvetti, F. Monzani, Low-grade systemic inflammation causes endothelial dysfunction in patients with Hashimoto’s thyroiditis. J. Clin. Endocrinol. Metab. 91, 5076–5082 (2006). https://doi.org/10.1210/jc.2006-1075

    Article  CAS  PubMed  Google Scholar 

  25. J.J. Díez, A. Hernanz, S. Medina, C. Bayón, P. Iglesias, Serum concentrations of tumour necrosis factor-alpha (TNF-α) and soluble TNF-α receptor p55 in patients with hypothyroidism and hyperthyroidism before and after normalization of thyroid function. Clin. Endocrinol. 57, 515–521 (2002). https://doi.org/10.1046/j.1365-2265.2002.01629.x

    Article  Google Scholar 

  26. J.H. Gómez-Zamudio, V. Mendoza-Zubieta, A. Ferreira-Hermosillo, M.A. Molina-Ayala, A. Valladares-Sálgado, F. Suárez-Sánchez, J. de Jesús Peralta-Romero, M. Cruz, High thyroid-stimulating hormone levels increase proinflammatory and cardiovascular markers in patients with extreme obesity. Arch. Med. Res. 47, 476–482 (2016). https://doi.org/10.1016/j.arcmed.2016.10.007

    Article  CAS  PubMed  Google Scholar 

  27. A.P. Weetman, A.M. McGregor, Autoimmune thyroid disease: further developments in our understanding. Endocr. Rev. 15, 788–830 (1994). https://doi.org/10.1210/edrv-15-6-788

    Article  CAS  PubMed  Google Scholar 

  28. C.X. Gao, B. Yang, Q. Guo, L.H. Wei, L.M. Tian, High thyroid-stimulating hormone level is associated with the risk of developing atherosclerosis in subclinical hypothyroidism. Horm. Metab. Res. 47, 220–224 (2015). https://doi.org/10.1055/s-0034-1394370

    Article  CAS  PubMed  Google Scholar 

  29. T.T. Antunes, A. Gagnon, M.L. Langille, A. Sorisky, Thyroid-stimulating hormone induces interleukin-6 release from human adipocytes through activation of the nuclear factor-κB pathway. Endocrinology 149, 3062–3066 (2008). https://doi.org/10.1210/en.2007-1588

    Article  CAS  PubMed  Google Scholar 

  30. Y.-J. Zhang, W. Zhao, M.-Y. Zhu, S.-S. Tang, H. Zhang, Thyroid-stimulating hormone induces the secretion of tumor necrosis factor-α from 3T3-L1 adipocytes via a protein Kinase A-dependent pathway. Exp. Clin. Endocrinol. Diabetes 121, 488–493 (2013). https://doi.org/10.1055/s-0033-1347266

    Article  CAS  PubMed  Google Scholar 

  31. T.T. Antunes, A. Gagnon, A. Bell, A. Sorisky, Thyroid-stimulating hormone stimulates interleukin-6 release from 3T3-L1 adipocytes through a cAMP-protein Kinase A pathway. Obes. Res. 13, 2066–2071 (2005). https://doi.org/10.1038/oby.2005.256

    Article  CAS  PubMed  Google Scholar 

  32. A. Gagnon, M.L. Langille, S. Chaker, T.T. Antunes, J. Durand, A. Sorisky, TSH signaling pathways that regulate MCP-1 in human differentiated adipocytes. Metabolism 63, 812–821 (2014). https://doi.org/10.1016/j.metabol.2014.02.015

    Article  CAS  PubMed  Google Scholar 

  33. M. Whetsell, E.U. Bagriacik, G.S. Seetharamaiah, B.S. Prabhakar, J.R. Klein, Neuroendocrine-induced synthesis of bone marrow-derived cytokines with inflammatory immunomodulating properties. Cell. Immunol. 192, 159–166 (1999). https://doi.org/10.1006/cimm.1998.1444

    Article  CAS  PubMed  Google Scholar 

  34. A. Dardano, L. Ghiadoni, Y. Plantinga, N. Caraccio, A. Bemi, E. Duranti, S. Taddei, E. Ferrannini, A. Salvetti, F. Monzani, Recombinant human thyrotropin reduces endothelium-dependent vasodilation in patients monitored for differentiated thyroid carcinoma. J. Clin. Endocrinol. Metab. 91, 4175–4178 (2006). https://doi.org/10.1210/jc.2006-0440

    Article  CAS  PubMed  Google Scholar 

  35. R.C. Marchiori, L.A.F. Pereira, A.A. Naujorks, D.L. Rovaris, D.F. Meinerz, M.M.M.F. Duarte, J.B.T. Rocha, Improvement of blood inflammatory marker levels in patients with hypothyroidism under levothyroxine treatment. BMC Endocr. Disord. 15 (2015). https://doi.org/10.1186/s12902-015-0032-3

  36. N. Nanda, Z. Bobby, A. Hamide, Inflammation and oxidative stress in hypothyroids: Additive effects on cardiovascular risk. Indian J. Physiol. Pharmacol. 55, 351–356 (2011)

    CAS  PubMed  Google Scholar 

  37. A. Haribabu, V.S. Reddy, C. Pallavi, A.R. Bitla, A. Sachan, P. Pullaiah, V. Suresh, P.V.L.N.S. Rao, M.M. Suchitra, Evaluation of protein oxidation and its association with lipid peroxidation and thyrotropin levels in overt and subclinical hypothyroidism. Endocrine. 44, 152–157 (2013). https://doi.org/10.1007/s12020-012-9849-y

    Article  CAS  PubMed  Google Scholar 

  38. N. Nanda, Z. Bobby, A. Hamide, Association of thyroid stimulating hormone and coronary lipid risk factors with lipid peroxidation in hypothyroidism. Clin. Chem. Lab. Med. 46 (2008). https://doi.org/10.1515/CCLM.2008.139

  39. V.S. Reddy, S. Bukke, K. Mahato, V. Kumar, N.V. Reddy, M. Munikumar, B. Vodelu, A meta-analysis of the association of serum ischaemia-modified albumin levels with human hypothyroidism and hyperthyroidism. Biosci. Rep. 37 (2017). https://doi.org/10.1042/BSR20160268

  40. K.A. Metwalley, H.S. Farghaly, K. Saad, H.A.K. Othman, Oxidative status in children and adolescents with autoimmune thyroiditis. Clin. Exp. Med. 16, 571–575 (2016). https://doi.org/10.1007/s10238-015-0386-x

    Article  CAS  PubMed  Google Scholar 

  41. A. Aydogdu, E.Y. Karakas, E. Erkus, I.H. Altiparmak, E. Savik, T. Ulas, T. Sabuncu, Epicardial fat thickness and oxidative stress parameters in patients with subclinical hypothyroidism. Arch. Med. Sci. 13, 383–389 (2017). https://doi.org/10.5114/aoms.2017.65479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. L.J. Lakshmi, E. Mohapatra, D. Zephy, S. K., Serum lipids and oxidative stress in hypothyroidism. J. Adv. Res. Biol. Sci. 5, 63–66 (2013)

    Google Scholar 

  43. A.N. Torun, S. Kulaksizoglu, M. Kulaksizoglu, B.O. Pamuk, E. Isbilen, N.B. Tutuncu, Serum total antioxidant status and lipid peroxidation marker malondialdehyde levels in overt and subclinical hypothyroidism. Clin. Endocrinol. 70, 469–474 (2009). https://doi.org/10.1111/j.1365-2265.2008.03348.x

    Article  CAS  Google Scholar 

  44. M.J. Cheserek, G.R. Wu, A. Ntazinda, Y.H. Shi, L.Y. Shen, G.W. Le, Association between thyroid hormones, lipids and oxidative stress markers in subclinical hypothyroidism. J. Med. Biochem. 34, 323–331 (2015). https://doi.org/10.2478/jomb-2014-0044

    Article  PubMed  PubMed Central  Google Scholar 

  45. Y. Chen, G. Wu, M. Xu, The effect of l-thyroxine substitution on oxidative stress in early-stage diabetic nephropathy patients with subclinical hypothyroidism: a randomized double-blind and placebo-controlled study. Int. Urol. Nephrol. 50, 97–103 (2018). https://doi.org/10.1007/s11255-017-1756-y

    Article  CAS  PubMed  Google Scholar 

  46. G. Baskol, H. Atmaca, F. Tanriverdi, M. Baskol, D. Kocer, F. Bayram, Oxidative stress and enzymatic antioxidant status in patients with hypothyroidism before and after treatment. Exp. Clin. Endocrinol. Diabetes. 115, 522–526 (2007). https://doi.org/10.1055/s-2007-981457

    Article  CAS  PubMed  Google Scholar 

  47. H. Erdamar, H. Demirci, H. Yaman, M.K. Erbil, T. Yakar, B. Sancak, S. Elbeg, G. Biberoǧlu, I. Yetkin, The effect of hypothyroidism, hyperthyroidism, and their treatment on parameters of oxidative stress and antioxidant status. Clin. Chem. Lab. Med. 46, 1004–1010 (2008). https://doi.org/10.1515/CCLM.2008.183

    Article  CAS  PubMed  Google Scholar 

  48. S.V. Reddy, M.M. Suchitra, V. Pradeep, S. Alok, V. Suresh, A.R. Bitla, P.V.L.N. Srinivasa Rao, Ischemia-modified albumin levels in overt and subclinical hypothyroidism. J. Endocrinol. Investig. 38, 885–890 (2015). https://doi.org/10.1007/s40618-015-0283-x

    Article  CAS  Google Scholar 

  49. S. Mutlu, A. Parlak, U. Aydogan, A. Aydogdu, B. Soykut, C. Akay, K. Saglam, A. Taslipinar, The effect of levothyroxine replacement therapy on lipid profile and oxidative stress parameters in patients with subclinical hypothyroid. Arch. Pharm. Res. (2013). https://doi.org/10.1007/s12272-013-0227-y

Download references

Funding

M.L.T. is member of the National Scientific and Technical Research Council (CONICET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariana L. Tellechea.

Ethics declarations

Conflict of interest

The author declares no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tellechea, M.L. Meta-analytic evidence for increased low-grade systemic inflammation and oxidative stress in hypothyroid patients. Can levothyroxine replacement therapy mitigate the burden?. Endocrine 72, 62–71 (2021). https://doi.org/10.1007/s12020-020-02484-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-020-02484-1

Keywords

Navigation