Skip to main content

Advertisement

Log in

Novel thyroid hormones

  • Mini Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

The field of thyroid hormone signaling has grown more complex in recent years. In particular, it has been suggested that some thyroid hormone derivatives, tentatively named “novel thyroid hormones” or “active thyroid hormone metabolites”, may act as independent chemical messengers. They include 3,5-diiodothyronine (T2), 3-iodothyronamine (T1AM), and several iodothyroacetic acids, i.e., 3,5,3’,5’-thyroacetic acid (TA4), 3,5,3’-thyroacetic acid (TA3), and 3-thyroacetic acid (TA1). We summarize the present knowledge on these compounds, namely their biosynthetic pathways, endogenous levels, molecular targets, and the functional effects elicited in experimental preparations or intact animals after exogenous administration. Their physiological and pathophysiological role is discussed, and potential therapeutic applications are outlined. The requirements needed to qualify these substances as chemical messengers must still be validated, although promising evidence has been collected. At present, the best candidate to the role of independent chemical messenger appears to be T1AM, and its most interesting effects concern metabolism and brain function. The responses elicited in experimental animals have suggested potential therapeutic applications. TA3 has an established role in thyroid hormone resistance syndromes, and is under investigation in Allen–Herndon–Dudley syndrome. Other potential targets are represented by obesity and dyslipidemia (for T2 and T1AM); dementia and degenerative brain disease (for T1AM and TA1); cancer (for T1AM and TA4). Another intriguing and unexplored question is the potential relevance of these metabolites in the clinical picture of hypothyroidism and in the response to replacement therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. A.H. van der Spek, E. Fliers, A. Boelen, The classic pathways of thyroid hormone metabolism. Mol. Cell Endocrinol. 458, 29–38 (2017). https://doi.org/10.1016/j.mce.2017.01.025

    Article  CAS  PubMed  Google Scholar 

  2. A.C. Bianco, A. Dumitrescu, B. Gereben, M.O. Ribeiro, T.L. Fonseca, G.W. Fernandes, B. Bocco, Paradigms of dynamic control of thyroid hormone signaling. Endocr. Rev. (2019). https://doi.org/10.1210/er.2018-00275

  3. H. Meinhold, P. Schurnbrand, A radioimmunoassay for 3,5-diiodothyronine. Clin. Endocrinol. 8(6), 493–497 (1978)

    Article  CAS  Google Scholar 

  4. I. Lehmphul, G. Brabant, H. Wallaschofski, M. Ruchala, C.J. Strasburger, J. Kohrle, Z. Wu, Detection of 3,5-diiodothyronine in sera of patients with altered thyroid status using a new monoclonal antibody-based chemiluminescence immunoassay. Thyroid 24(9), 1350–1360 (2014). https://doi.org/10.1089/thy.2013.0688

    Article  CAS  PubMed  Google Scholar 

  5. M. Pietzner, G. Homuth, K. Budde, I. Lehmphul, U. Volker, H. Volzke, M. Nauck, J. Kohrle, N. Friedrich, Urine metabolomics by (1)H-NMR spectroscopy indicates associations between serum 3,5-T2 concentrations and intermediary metabolism in euthyroid humans. Eur. Thyroid J. 4(Suppl 1), 92–100 (2015). https://doi.org/10.1159/000381308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. L. Lorenzini, N.M. Nguyen, G. Sacripanti, E. Serni, M. Borso, F. Saponaro, E. Cecchi, T. Simoncini, S. Ghelardoni, R. Zucchi, A. Saba, Assay of endogenous 3,5-diiodo-L-thyronine (3,5-T2) and 3,3’-diiodo-L-thyronine (3,3’-T2) in human serum: a feasibility study. Front Endocrinol. (Lausanne) 10, 88 (2019). https://doi.org/10.3389/fendo.2019.00088

    Article  Google Scholar 

  7. M. Hansen, X. Luong, D.L. Sedlak, C.C. Helbing, T. Hayes, Quantification of 11 thyroid hormones and associated metabolites in blood using isotope-dilution liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 408(20), 5429–5442 (2016). https://doi.org/10.1007/s00216-016-9614-9

    Article  CAS  PubMed  Google Scholar 

  8. Z.M. Li, F. Giesert, D. Vogt-Weisenhorn, K.M. Main, N.E. Skakkebaek, H. Kiviranta, J. Toppari, U. Feldt-Rasmussen, H. Shen, K.W. Schramm, M. De Angelis, Determination of thyroid hormones in placenta using isotope-dilution liquid chromatography quadrupole time-of-flight mass spectrometry. J. Chromatogr. A 1534, 85–92 (2018). https://doi.org/10.1016/j.chroma.2017.12.048

    Article  CAS  PubMed  Google Scholar 

  9. A. Mendoza, P. Navarrete-Ramirez, G. Hernandez-Puga, P. Villalobos, G. Holzer, J.P. Renaud, V. Laudet, A. Orozco, 3,5-T2 is an alternative ligand for the thyroid hormone receptor beta1. Endocrinology 154(8), 2948–2958 (2013). https://doi.org/10.1210/en.2013-1030

    Article  CAS  PubMed  Google Scholar 

  10. S. da Silva Teixeira, C. Filgueira, D.H. Sieglaff, C. Benod, R. Villagomez, L.J. Minze, A. Zhang, P. Webb, M.T. Nunes, 3,5-diiodothyronine (3,5-T2) reduces blood glucose independently of insulin sensitization in obese mice. Acta Physiol. 220(2), 238–250 (2017). https://doi.org/10.1111/apha.12821

    Article  CAS  Google Scholar 

  11. P.J. Davis, F. Goglia, J.L. Leonard, Nongenomic actions of thyroid hormone. Nat. Rev. Endocrinol. 12(2), 111–121 (2016). https://doi.org/10.1038/nrendo.2015.205

    Article  CAS  PubMed  Google Scholar 

  12. R. Senese, P. de Lange, G. Petito, M. Moreno, F. Goglia, A. Lanni, 3,5-Diiodothyronine: a novel thyroid hormone metabolite and potent modulator of energy metabolism. Front Endocrinol. (Lausanne) 9, 427 (2018). https://doi.org/10.3389/fendo.2018.00427

    Article  Google Scholar 

  13. F. Goglia, The effects of 3,5-diiodothyronine on energy balance. Front Physiol. 5, 528 (2015)

    Article  Google Scholar 

  14. A.S. Padron, R.A. Neto, T.U. Pantaleao, M.C. de Souza dos Santos, R.L. Araujo, B.M. de Andrade, M. da Silva Leandro, J.P. de Castro, A.C. Ferreira, D.P. de Carvalho, Administration of 3,5-diiodothyronine (3,5-T2) causes central hypothyroidism and stimulates thyroid-sensitive tissues. J. Endocrinol. 221(3), 415–427 (2014). https://doi.org/10.1530/JOE-13-0502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. W. Jonas, J. Lietzow, F. Wohlgemuth, C.S. Hoefig, P. Wiedmer, U. Schweizer, J. Kohrle, A. Schurmann, 3,5-Diiodo-L-thyronine (3,5-t2) exerts thyromimetic effects on hypothalamus-pituitary-thyroid axis, body composition, and energy metabolism in male diet-induced obese mice. Endocrinology 156(1), 389–399 (2015). https://doi.org/10.1210/en.2014-1604

    Article  CAS  PubMed  Google Scholar 

  16. J.W. Dietrich, P. Muller, F. Schiedat, M. Schlomicher, J. Strauch, A. Chatzitomaris, H.H. Klein, A. Mugge, J. Kohrle, E. Rijntjes, I. Lehmphul, Nonthyroidal Illness syndrome in cardiac illness involves elevated concentrations of 3,5-diiodothyronine and correlates with atrial remodeling. Eur. Thyroid J. 4(2), 129–137 (2015). https://doi.org/10.1159/000381543

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. A. Antonelli, P. Fallahi, S.M. Ferrari, A. Di Domenicantonio, M. Moreno, A. Lanni, F. Goglia, 3,5-diiodo-L-thyronine increases resting metabolic rate and reduces body weight without undesirable side effects. J. Biol. Regul. Homeost. Agents 25(4), 655–660 (2011)

    CAS  PubMed  Google Scholar 

  18. F. van der Valk, C. Hassing, M. Visser, P. Thakkar, A. Mohanan, K. Pathak, C. Dutt, V. Chauthaiwale, M. Ackermans, A. Nederveen, M. Serlie, M. Nieuwdorp, E. Stroes, The effect of a diiodothyronine mimetic on insulin sensitivity in male cardiometabolic patients: a double-blind randomized controlled trial. PLoS ONE 9(2), e86890 (2014). https://doi.org/10.1371/journal.pone.0086890

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. T.S. Scanlan, K.L. Suchland, M.E. Hart, G. Chiellini, Y. Huang, P.J. Kruzich, S. Frascarelli, D.A. Crossley, J.R. Bunzow, S. Ronca-Testoni, E.T. Lin, D. Hatton, R. Zucchi, D.K. Grandy, 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat. Med 10(6), 638–642 (2004). https://doi.org/10.1038/nm1051

    Article  CAS  PubMed  Google Scholar 

  20. C.S. Hoefig, R. Zucchi, J. Köhrle, Thyronamines and derivatives: physiological relevance, pharmacological actions and future research directions. Thyroid 26, 1656–1673 (2016)

    Article  CAS  Google Scholar 

  21. A. Saba, G. Chiellini, S. Frascarelli, M. Marchini, S. Ghelardoni, A. Raffaelli, M. Tonacchera, P. Vitti, T.S. Scanlan, R. Zucchi, Tissue distribution and cardiac metabolism of 3-iodothyronamine. Endocrinology 151(10), 5063–5073 (2010). https://doi.org/10.1210/en.2010-0491

    Article  CAS  PubMed  Google Scholar 

  22. C.S. Hoefig, T. Wuensch, E. Rijntjes, I. Lehmphul, H. Daniel, U. Schweizer, J. Mittag, J. Kohrle, Biosynthesis of 3-Iodothyronamine from T4 in murine intestinal tissue. Endocrinology 156(11), 4356–4364 (2015). https://doi.org/10.1210/en.2014-1499

    Article  CAS  PubMed  Google Scholar 

  23. J. Kohrle, H. Biebermann, 3-Iodothyronamine-A thyroid hormone metabolite with distinct target profiles and mode of action. Endocr. Rev. 40(2), 602–630 (2019). https://doi.org/10.1210/er.2018-00182

    Article  PubMed  Google Scholar 

  24. A.G. Ianculescu, K.M. Giacomini, T.S. Scanlan, Identification and characterization of 3-iodothyronamine intracellular transport. Endocrinology 150(4), 1991–1999 (2009). https://doi.org/10.1210/en.2008-1339

    Article  CAS  PubMed  Google Scholar 

  25. G. Chiellini, P. Erba, V. Carnicelli, C. Manfredi, S. Frascarelli, S. Ghelardoni, G. Mariani, R. Zucchi, Distribution of exogenous [125I]-3-iodothyronamine in mouse in vivo: relationship with trace amine-associated receptors. J. Endocrinol. 213(3), 223–230 (2012). https://doi.org/10.1530/JOE-12-0055

    Article  CAS  PubMed  Google Scholar 

  26. E. Galli, M. Marchini, A. Saba, S. Berti, M. Tonacchera, P. Vitti, T.S. Scanlan, G. Iervasi, R. Zucchi, Detection of 3-iodothyronamine in human patients: a preliminary study. J. Clin. Endocrinol. Metab. 97(1), E69–E74 (2012). https://doi.org/10.1210/jc.2011-1115

    Article  CAS  PubMed  Google Scholar 

  27. M.T. Ackermans, L.P. Klieverik, P. Ringeling, E. Endert, A. Kalsbeek, E. Fliers, An online solid-phase extraction-liquid chromatography-tandem mass spectrometry method to study the presence of thyronamines in plasma and tissue and their putative conversion from 13C6-thyroxine. J. Endocrinol. 206(3), 327–334 (2010). https://doi.org/10.1677/JOE-10-0060

    Article  CAS  PubMed  Google Scholar 

  28. C.S. Hoefig, J. Kohrle, G. Brabant, K. Dixit, B. Yap, C.J. Strasburger, Z. Wu, Evidence for extrathyroidal formation of 3-iodothyronamine in humans as provided by a novel monoclonal antibody-based chemiluminescent serum immunoassay. J. Clin. Endocrinol. Metab. 96(6), 1864–1872 (2011). https://doi.org/10.1210/jc.2010-2680

    Article  CAS  PubMed  Google Scholar 

  29. L. Langouche, I. Lehmphul, S.V. Perre, J. Kohrle, G. Van den Berghe, Circulating 3-T1AM and 3,5-T2 in critically Ill patients: a cross-sectional observational study. Thyroid 26(12), 1674–1680 (2016). https://doi.org/10.1089/thy.2016.0214

    Article  CAS  PubMed  Google Scholar 

  30. J.L. la Cour, H.M. Christensen, J. Kohrle, I. Lehmphul, C. Kistorp, B. Nygaard, J. Faber, Association between 3-iodothyronamine (T1am) concentrations and left ventricular function in chronic heart failure. J. Clin. Endocrinol. Metab. 104(4), 1232–1238 (2019). https://doi.org/10.1210/jc.2018-01466

    Article  PubMed  Google Scholar 

  31. L. Lorenzini, S. Ghelardoni, A. Saba, G. Sacripanti, G. Chiellini, R. Zucchi, Recovery of 3-iodothyronamine and derivatives in biological matrixes: problems and pitfalls. Thyroid 27(10), 1323–1331 (2017). https://doi.org/10.1089/thy.2017.0111

    Article  CAS  PubMed  Google Scholar 

  32. M. Coster, H. Biebermann, T. Schoneberg, C. Staubert, Evolutionary conservation of 3-iodothyronamine as an agonist at the trace amine-associated receptor 1. Eur. Thyroid J. 4(Suppl 1), 9–20 (2015). https://doi.org/10.1159/000430839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. R. Zucchi, A. Accorroni, G. Chiellini, Update on 3-iodothyronamine and its neurological and metabolic actions. Front Physiol. 5, 402 (2014). https://doi.org/10.3389/fphys.2014.00402

    Article  PubMed  PubMed Central  Google Scholar 

  34. E. Shinderman-Maman, K. Cohen, D. Moskovich, A. Hercbergs, H. Werner, P.J. Davis, M. Ellis, O. Ashur-Fabian, Thyroid hormones derivatives reduce proliferation and induce cell death and DNA damage in ovarian cancer. Sci. Rep. 7(1), 16475 (2017). https://doi.org/10.1038/s41598-017-16593-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. E. Tremmel, S. Hofmann, C. Kuhn, H. Heidegger, S. Heublein, K. Hermelink, R. Wuerstlein, N. Harbeck, D. Mayr, S. Mahner, N. Ditsch, U. Jeschke, A. Vattai, Thyronamine regulation of TAAR1 expression in breast cancer cells and investigation of its influence on viability and migration. Breast Cancer (Dove Med Press) 11, 87–97 (2019). https://doi.org/10.2147/BCTT.S178721

    Article  Google Scholar 

  36. G. Rutigliano, A. Accorroni, R. Zucchi, The case for TAAR1 as a modulator of central nervous system function. Front Pharm. 8, 987 (2017). https://doi.org/10.3389/fphar.2017.00987

    Article  CAS  Google Scholar 

  37. V. Mariotti, E. Melissari, C. Iofrida, M. Righi, M. Di Russo, R. Donzelli, A. Saba, S. Frascarelli, G. Chiellini, R. Zucchi, S. Pellegrini, Modulation of gene expression by 3-iodothyronamine: genetic evidence for a lipolytic pattern. PLoS ONE 9(11), e106923 (2014). https://doi.org/10.1371/journal.pone.0106923

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. F.M. Assadi-Porter, H. Reiland, M. Sabatini, L. Lorenzini, V. Carnicelli, M. Rogowski, E.S. Selen Alpergin, M. Tonelli, S. Ghelardoni, A. Saba, R. Zucchi, G. Chiellini, Metabolic reprogramming by 3-iodothyronamine (T1AM): a new perspective to reverse obesity through co-regulation of sirtuin 4 and 6 expression. Int. J. Mol. Sci. 19(5) (2018). https://doi.org/10.3390/ijms19051535

  39. E.S. Selen Alpergin, Z. Bolandnazar, M. Sabatini, M. Rogowski, G. Chiellini, R. Zucchi, F.M. Assadi-Porter, Metabolic profiling reveals reprogramming of lipid metabolic pathways in treatment of polycystic ovary syndrome with 3-iodothyronamine. Physiol. Rep. 5(1) (2017). https://doi.org/10.14814/phy2.13097

  40. M.E. Manni, G. De Siena, A. Saba, M. Marchini, E. Landucci, E. Gerace, M. Zazzeri, C. Musilli, D. Pellegrini-Giampietro, R. Matucci, R. Zucchi, L. Raimondi, Pharmacological effects of 3-iodothyronamine (T1AM) in mice include facilitation of memory acquisition and retention and reduction of pain threshold. Br. J. Pharm. 168(2), 354–362 (2013). https://doi.org/10.1111/j.1476-5381.2012.02137.x

    Article  CAS  Google Scholar 

  41. J.A. Haviland, H. Reiland, D.E. Butz, M. Tonelli, W.P. Porter, R. Zucchi, T.S. Scanlan, G. Chiellini, F.M. Assadi-Porter, NMR-based metabolomics and breath studies show lipid and protein catabolism during low dose chronic T(1)AM treatment. Obes. (Silver Spring) 21(12), 2538–2544 (2013). https://doi.org/10.1002/oby.20391

    Article  CAS  Google Scholar 

  42. A. Laurino, E. Landucci, F. Resta, G. De Siena, D.E. Pellegrini-Giampietro, A. Masi, G. Mannaioni, L. Raimondi, Anticonvulsant and neuroprotective effects of the thyroid hormone metabolite 3-iodothyroacetic acid. Thyroid 28(10), 1387–1397 (2018). https://doi.org/10.1089/thy.2017.0506

    Article  CAS  PubMed  Google Scholar 

  43. J. Lv, J. Liao, W. Tan, L. Yang, X. Shi, H. Zhang, L. Chen, S. Wang, Q. Li, 3-Iodothyronamine acting through an anti-apoptotic mechanism is neuroprotective against spinal cord injury in rats. Ann. Clin. Lab Sci. 48(6), 736–742 (2018)

    CAS  PubMed  Google Scholar 

  44. S. Frascarelli, S. Ghelardoni, G. Chiellini, E. Galli, F. Ronca, T.S. Scanlan, R. Zucchi, Cardioprotective effect of 3-iodothyronamine in perfused rat heart subjected to ischemia and reperfusion. Cardiovasc Drugs Ther. 25(4), 307–313 (2011). https://doi.org/10.1007/s10557-011-6320-x

    Article  CAS  PubMed  Google Scholar 

  45. G. Chiellini, L. Bellusci, M. Sabatini, R. Zucchi, Thyronamines and analogues - the route from rediscovery to translational research on thyronergic amines. Mol. Cell Endocrinol. (2017). https://doi.org/10.1016/j.mce.2017.01.002

  46. P. Jouan, R. Michel, J. Roche, W. Wolf, The recovery of 3:5:3’ -triiodothyroacetic acid and 3:3’ -diiodothyronine from rat kidney after injection of 3:5:3’ triiodothyronine. Endocrinology 59(4), 425–432 (1956). https://doi.org/10.1210/endo-59-4-425

    Article  CAS  PubMed  Google Scholar 

  47. E.C. Albright, H.A. Lardy, F.C. Larson, K. Tomita, Enzymatic conversion of thyroxine and triiodothyronine to the corresponding acetic acid analogues. Endocrinology 59(2), 252–254 (1956). https://doi.org/10.1210/endo-59-2-252

    Article  CAS  PubMed  Google Scholar 

  48. J.H. Wilkinson, Recent work on thyroid hormones. Post. Med J. 33(381), 333–337 (1957). https://doi.org/10.1136/pgmj.33.381.333

    Article  CAS  Google Scholar 

  49. C.S. Hoefig, K. Renko, S. Piehl, T.S. Scanlan, M. Bertoldi, T. Opladen, G.F. Hoffmann, J. Klein, O. Blankenstein, U. Schweizer, J. Kohrle, Does the aromatic L-amino acid decarboxylase contribute to thyronamine biosynthesis? Mol. Cell Endocrinol. 349(2), 195–201 (2012). https://doi.org/10.1016/j.mce.2011.10.024

    Article  CAS  PubMed  Google Scholar 

  50. S. Piehl, T. Heberer, G. Balizs, T.S. Scanlan, R. Smits, B. Koksch, J. Kohrle, Thyronamines are isozyme-specific substrates of deiodinases. Endocrinology 149(6), 3037–3045 (2008). https://doi.org/10.1210/en.2007-1678

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. I.J. Chopra, R.J. Boado, D.L. Geffner, D.H. Solomon, A radioimmunoassay for measurement of thyronine and its acetic acid analog in urine. J. Clin. Endocrinol. Metab. 67(3), 480–487 (1988). https://doi.org/10.1210/jcem-67-3-480

    Article  CAS  PubMed  Google Scholar 

  52. S. Groeneweg, R.P. Peeters, T.J. Visser, W.E. Visser, Triiodothyroacetic acid in health and disease. J. Endocrinol. 234(2), R99–R121 (2017). https://doi.org/10.1530/JOE-17-0113

    Article  CAS  PubMed  Google Scholar 

  53. C.S. Pittman, T. Shimizu, A. Burger, J.B. Chambers Jr., The nondeiodinative pathways of thyroxine metabolism: 3,5,3’,5-tetraiodothyroacetic acid turnover in normal and fasting human subjects. J. Clin. Endocrinol. Metab. 50(4), 712–716 (1980). https://doi.org/10.1210/jcem-50-4-712

    Article  CAS  PubMed  Google Scholar 

  54. C. Musilli, G. De Siena, M.E. Manni, A. Logli, E. Landucci, R. Zucchi, A. Saba, R. Donzelli, M.B. Passani, G. Provensi, L. Raimondi, Histamine mediates behavioural and metabolic effects of 3-iodothyroacetic acid, an endogenous end product of thyroid hormone metabolism. Br. J. Pharm. 171(14), 3476–3484 (2014). https://doi.org/10.1111/bph.12697

    Article  CAS  Google Scholar 

  55. A. Laurino, G. De Siena, A. Saba, G. Chiellini, E. Landucci, R. Zucchi, L. Raimondi, In the brain of mice, 3-iodothyronamine (T1AM) is converted into 3-iodothyroacetic acid (TA1) and it is included within the signaling network connecting thyroid hormone metabolites with histamine. Eur. J. Pharm. 761, 130–134 (2015). https://doi.org/10.1016/j.ejphar.2015.04.038

    Article  CAS  Google Scholar 

  56. F.A. Verhoeven, H.H. Van der Putten, G. Hennemann, J.M. Lamers, T.J. Visser, M.E. Everts, Uptake of triiodothyronine and triiodothyroacetic acid in neonatal rat cardiomyocytes: effects of metabolites and analogs. J. Endocrinol. 173(2), 247–255 (2002)

  57. S. Horn, S. Kersseboom, S. Mayerl, J. Muller, C. Groba, M. Trajkovic-Arsic, T. Ackermann, T.J. Visser, H. Heuer, Tetrac can replace thyroid hormone during brain development in mouse mutants deficient in the thyroid hormone transporter mct8. Endocrinology 154(2), 968–979 (2013). https://doi.org/10.1210/en.2012-1628

    Article  CAS  PubMed  Google Scholar 

  58. T. Takeda, S. Suzuki, R.T. Liu, L.J. DeGroot, Triiodothyroacetic acid has unique potential for therapy of resistance to thyroid hormone. J. Clin. Endocrinol. Metab. 80(7), 2033–2040 (1995). https://doi.org/10.1210/jcem.80.7.7608251

    Article  CAS  PubMed  Google Scholar 

  59. S.A. Mousa, H.Y. Lin, H.Y. Tang, A. Hercbergs, M.K. Luidens, P.J. Davis, Modulation of angiogenesis by thyroid hormone and hormone analogues: implications for cancer management. Angiogenesis 17(3), 463–469 (2014). https://doi.org/10.1007/s10456-014-9418-5

    Article  CAS  PubMed  Google Scholar 

  60. S. Groeneweg, R.P. Peeters, T.J. Visser, W.E. Visser, Therapeutic applications of thyroid hormone analogues in resistance to thyroid hormone (RTH) syndromes. Mol. Cell Endocrinol. 458, 82–90 (2017). https://doi.org/10.1016/j.mce.2017.02.029

    Article  CAS  PubMed  Google Scholar 

  61. A.M. Dumitrescu, S. Refetoff, The syndromes of reduced sensitivity to thyroid hormone. Biochim. Biophys. Acta. 1830(7), 3987–4003 (2013). https://doi.org/10.1016/j.bbagen.2012.08.005

    Article  CAS  PubMed  Google Scholar 

  62. E. Schoenmakers, B. Carlson, M. Agostini, C. Moran, O. Rajanayagam, E. Bochukova, R. Tobe, R. Peat, E. Gevers, F. Muntoni, P. Guicheney, N. Schoenmakers, S. Farooqi, G. Lyons, D. Hatfield, K. Chatterjee, Mutation in human selenocysteine transfer RNA selectively disrupts selenoprotein synthesis. J. Clin. Invest. 126(3), 992–996 (2016). https://doi.org/10.1172/JCI84747

    Article  PubMed  PubMed Central  Google Scholar 

  63. C.E. Schwartz, R.E. Stevenson, The MCT8 thyroid hormone transporter and Allan-Herndon-Dudley syndrome. Best. Pr. Res Clin. Endocrinol. Metab. 21(2), 307–321 (2007). https://doi.org/10.1016/j.beem.2007.03.009

    Article  CAS  Google Scholar 

  64. S.A. Mousa, J.J. Bergh, E. Dier, A. Rebbaa, L.J. O’Connor, M. Yalcin, A. Aljada, E. Dyskin, F.B. Davis, H.Y. Lin, P.J. Davis, Tetraiodothyroacetic acid, a small molecule integrin ligand, blocks angiogenesis induced by vascular endothelial growth factor and basic fibroblast growth factor. Angiogenesis 11(2), 183–190 (2008). https://doi.org/10.1007/s10456-007-9088-7

    Article  CAS  PubMed  Google Scholar 

  65. D.J. Bharali, M. Yalcin, P.J. Davis, S.A. Mousa, Tetraiodothyroacetic acid-conjugated PLGA nanoparticles: a nanomedicine approach to treat drug-resistant breast cancer. Nanomed. 8(12), 1943–1954 (2013). https://doi.org/10.2217/nnm.12.200

    Article  CAS  Google Scholar 

  66. M. Yalcin, D.J. Bharali, L. Lansing, E. Dyskin, S.S. Mousa, A. Hercbergs, F.B. Davis, P.J. Davis, S.A. Mousa, Tetraidothyroacetic acid (tetrac) and tetrac nanoparticles inhibit growth of human renal cell carcinoma xenografts. Anticancer Res. 29(10), 3825–3831 (2009)

    CAS  PubMed  Google Scholar 

  67. J.S. LoPresti, R.S. Dlott, Augmented conversion of T3 to triac (T3AC) is the major regulator of the low T3 state in fasting man. Thyroid 2, S-39 (1992)

    Article  Google Scholar 

  68. F. Flamant, K. Gauthier, J. Samarut, Thyroid hormones signaling is getting more complex: STORMs are coming. Mol. Endocrinol. 21(2), 321–333 (2007). https://doi.org/10.1210/me.2006-0035

    Article  CAS  PubMed  Google Scholar 

  69. B. Biondi, L. Wartofsky, Combination treatment with T4 and T3: toward personalized replacement therapy in hypothyroidism? J. Clin. Endocrinol. Metab. 97(7), 2256–2271 (2012). https://doi.org/10.1210/jc.2011-3399

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riccardo Zucchi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical statement

This article is a review and therefore it does not contain any studies with human participants or animals performed by any of the authors.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zucchi, R., Rutigliano, G. & Saponaro, F. Novel thyroid hormones. Endocrine 66, 95–104 (2019). https://doi.org/10.1007/s12020-019-02018-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-019-02018-4

Keywords

Navigation