Skip to main content

Advertisement

Log in

Effect of cilostazol in treating diabetes-associated microvascular complications

  • Mini Review
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Cilostazol (Pletal), a phosphodiesterase-3 inhibitor, was approved in the United States in 1999 to reduce symptoms of intermittent claudication. Cyclic adenosine monophosphate levels increase from inhibition of phosphodiesterase resulting in anti-platelet, anti-inflammatory, and vasodilatory effects. Diabetes mellitus is a chronic disease that causes endothelial and platelet dysfunction leading to both microvascular and macrovascular complications. This mini-review highlights the emerging evidence suggesting benefits of using cilostazol in treating microvascular complications associated with diabetes mellitus.

Methods

A review of literature was conducted using PubMed and Embase databases focusing on cilostazol use in diabetes mellitus.

Results

Cilostazol demonstrated renoprotective effects in patients with diabetic nephropathy by reducing serum soluble adhesion molecule-1 and monocyte chemoattractant protein-1. Cilostazol’s anti-inflammatory actions predictably attenuate glomerular damage from increased leukocyte adherence. Additionally, cilostazol delayed renal dysfunction secondary to type 2 diabetes mellitus as albuminuria was reduced most likely resulting from inhibition of nuclear factor kappa-induced inflammatory and endothelial markers. Cilostazol’s anti-inflammatory actions in addition to its vasodilatory actions relieved retinal hypoxia and decreased excessive production of retinal blood vessels suggesting benefit in diabetic retinopathy. Cilostazol did not improve neuropathy symptom scores signifying that it may not be as beneficial in patients with diabetic peripheral neuropathy without diabetic nephropathy or diabetic retinopathy.

Conclusions

Cilostazol’s pleiotropic effects may be beneficial in patients with type 2 diabetes mellitus and diabetic nephropathy. Additional, larger studies need to be conducted to assess the benefits and risks of using cilostazol as an alternative agent in treating patients with diabetic microvascular complications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. F. Gotoh, H. Tohgi, S. Hirai, et al., Cilostazol stroke prevention study: A placebo-controlled double-blind trial for secondary prevention of cerebral infarction. J Stroke Cerebrovasc Dis, 9, 147–157 (2000)

  2. D.J. Angiolillo, P. Capranzano, J.L. Ferreiro et al., Impact of adjunctive cilostazol therapy on platelet function profiles in patients with and without diabetes mellitus on aspirin and clopidogrel therapy. Thromb. Haemost. 106, 253–262 (2011)

    Article  CAS  Google Scholar 

  3. J.H. Huh, H. Seok, B.W. Lee, E.S. Kang, H.C. Lee, B.S. Cha, Effect of cilostazol on carotid intima-media thickness in type 2 diabetic patients without cardiovascular event. Endocrine 47, 138–145 (2014)

    Article  CAS  Google Scholar 

  4. Y. Shakur, L.S. Holst, T.R. Landstrom, M. Movsesian, E. Degerman, V. Manganiello, Regulation and function of the cyclic nucleotide phosphodiesterase (PDE3) gene family. Prog. Nucleic Acid Res. Mol. Biol. 66, 241–277 (2001)

    Article  CAS  Google Scholar 

  5. A. Schäfer, J. Bauersachs, Endothelial dysfunction, impaired endogenous platelet inhibition and platelet activation in diabetes and atherosclerosis. Curr. Vasc. Pharmacol. 6, 52–60 (2008)

    Article  Google Scholar 

  6. F. Biscetti, G. Straface, D. Pitocco, F. Zaccardi, G. Ghirlanda, A. Flex, Peroxisome proliferator-activated receptors and angiogenesis. Nutr. Metab. Cardiovasc. Dis. 19, 751–759 (2009)

    Article  CAS  Google Scholar 

  7. G. Jerums, S. Panagiotopoulos, E. Premaratne, R.J. MacIsaac, Integrating albuminuria and GFR in the assessment of diabetic nephropathy. Nat. Rev. Nephrol. 5, 397–406 (2009)

    Article  CAS  Google Scholar 

  8. W.C. Lee, H.C. Chen, C.Y. Wang et al., Cilostazol ameliorates nephropathy in type 1 diabetic rats involving improvement in oxidative stress and regulation of TGF-Beta and NF-kappaB. Biosci. Biotechnol. Biochem. 74, 1355–1361 (2010)

    Article  CAS  Google Scholar 

  9. C.G. Schnackenberg, Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R335–R342 (2002)

    Article  CAS  Google Scholar 

  10. A.S. Baldwin Jr, Annu. Rev. Immunol. 14, 649–683 (1996)

    Article  CAS  Google Scholar 

  11. H. Ha, M.R. Yu, Y.J. Choi, M. Kitamura, H.B. Lee, J. Am. Soc. Nephrol. 13, 894–902 (2002)

    CAS  PubMed  Google Scholar 

  12. F. Chiarelli, F. Cipollone, A. Mohn et al., Circulating monocyte chemoattractant protein-1 and early development of nephropathy in type 1 diabetes. Diabetes Care 25, 1829–1834 (2002)

    Article  CAS  Google Scholar 

  13. K. Tashiro, I. Koyanagi, A. Saitoh et al., Urinary levels of monocyte chemoattractant protein-1 (MCP-1) and interleukin-8 (IL-8), and renal injuries in patients with type 2 diabetic nephropathy. J. Clin. Lab. Anal. 16, 1–4 (2002)

    Article  CAS  Google Scholar 

  14. T. Morii, H. Fujita, T. Narita et al., Association of monocyte chemoattractant protein-1 (MCP-1) with renal tubular damage in diabetic nephropathy. J. Diabetes Complicat. 17, 11–15 (2003)

    Article  Google Scholar 

  15. W.H. Tang, F.H. Lin, C.H. Lee et al., Cilostazol effectively attenuates deterioration of albuminuria in patients with type 2 diabetes: a randomized, placebo-controlled trial. Endocrine 45, 293–301 (2014)

    Article  CAS  Google Scholar 

  16. L. Gao, F. Wang, B. Wang et al., Cilostazol protects diabetic rats from vascular inflammation via nuclear factor-kappa B-dependent down-regulation of vascular cell adhesion molecule-1 expression. J. Pharmacol. Exp. Ther. 318, 53–58 (2006)

    Article  CAS  Google Scholar 

  17. Y. Hattori, K. Suzuki, A. Tomizawa et al., Cilostazol inhibits cytokine-induced nuclear factor-kappa B activation via AMP activated protein kinase activation in vascular endothelial cells. Cardiovasc. Res. 81, 133–139 (2009)

    Article  CAS  Google Scholar 

  18. J.S. Liu, T.J. Chuang, J.H. Chen et al., Cilostazol attenuates the severity of peripheral arterial occlusive disease in patients with type 2 diabetes: the role of plasma soluble receptor for advanced glycation end-products. Endocrine 49, 703–710 (2015)

    Article  CAS  Google Scholar 

  19. X.M. Jiao, X.J. Jiao, X.G. Zhang et al., Cilostazol reduces microalbuminuria in type 2 diabetic nephropathy. Chin. Med. J. 126(22), 4395–4396 (2013)

    PubMed  Google Scholar 

  20. J.M. Li, A.M. Shah, ROS generation by nonphagocytic NADPH oxidase; potential relevance in diabetic nephropathy. J. Am. Soc. Nephrol. 14(8 Suppl 3), S221–S226 (2003)

    Article  CAS  Google Scholar 

  21. H. Ha, H.B. Lee, Reactive oxygen species and matrix remodeling in diabetic kidney. J. Am. Soc. Nephrol. 14(8 Suppl 3), S246–S249 (2003)

    Article  CAS  Google Scholar 

  22. D.A. Antonetti, A.J. Barber, S.K. Bronson et al., Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 55, 2401–2411 (2006)

    Article  CAS  Google Scholar 

  23. J.W. Miller, A.P. Adamis, L.P. Aiello, Vascular endothelial growth factor in ocular neovascularization and proliferative diabetic retinopathy. Diabetes Metab. Rev. 13, 37–50 (1997)

    Article  CAS  Google Scholar 

  24. K.I. Jung, J.H. Kim, H.Y. Park, C.K. Park, Neuroprotective effects of cilostazol on retinal ganglion cell damage in diabetic rats. J. Pharmacol. Exp. Ther. 345, 457–463 (2013)

    Article  CAS  Google Scholar 

  25. X. Zhang, S. Bao, B.D. Hambly, M.C. Gillies, Vascular endothelial growth factor-A: a multifunctional molecular player in diabetic retinopathy. Int. J. Biochem. Cell Biol. 41, 2368–2371 (2009)

    Article  CAS  Google Scholar 

  26. R.L. Rosales, M.M. Santos, L.B. Mercado-Asis, Cilostazol: a pilot study on safety and clinical efficacy in neuropathies of diabetes mellitus type 2 (ASCEND). Angiology 62, 625–635 (2011)

    Article  CAS  Google Scholar 

  27. Pletal [package insert]. Rockville, MD: Otsuka America Pharmaceutical, Inc.; (2015)

  28. Y. Aoki, M. Shimizu, N. Watanabe, The blood glucose level increased in parallel with the heart rate following cilostazol administration in three diabetic patients. Intern. Med. 53, 859–863 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicole J. Asal.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asal, N.J., Wojciak, K.A. Effect of cilostazol in treating diabetes-associated microvascular complications. Endocrine 56, 240–244 (2017). https://doi.org/10.1007/s12020-017-1279-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-017-1279-4

Keywords

Navigation