Skip to main content
Log in

The combination of RAF265, SB590885, ZSTK474 on thyroid cancer cell lines deeply impact on proliferation and MAPK and PI3K/Akt signaling pathways

  • PRECLINICAL STUDIES
  • Published:
Investigational New Drugs Aims and scope Submit manuscript

Summary

Papillary thyroid cancer (PTC) is the most frequent thyroid cancer entity, accounting for 88 % of cases. It may metastasize and loose iodine uptake capability, preventing any radioiodine or surgical treatment. The main gene altered in PTC is BRAF, which is found altered in over 50 % of cases. Moreover MAPK and PI3K/Akt pathways are greatly implicated in PTC development. Many target therapies for PTC are currently under investigation, unfortunately without the expected results. Aim of this study was to characterized the preclinical effectiveness of novel promising drugs, RAF265, SB590885 and ZSTK474 in 3 thyroid cancer cell lines (BCPAP, K1, 8505C). RAF265 and SB590885 target differentially BRAF, while ZSTK474 acts on PI3K. IC50 demonstrated high drug activities ranging from 0.1 to 6.2 μM, depending on drugs and cell type, while combination index revealed an interesting synergistic effect of combination regimen (RAF265 + ZSTK474 and SB590885 + ZSTK474) in almost all cell lines. Moreover this synergistic effect was particularly evident by Western blot, whereas dual MAPK and PI3K/Akt inhibition was detected. In addition, treating cells with SB590885 induced marked morphological changes, leading to massive vacuolization. This suggests an activation of apoptotic process, as underlined by Annexin V flow cytometry analysis. Also cell cycle was altered in treated cells, without evidence of a common pattern, but rather with a more specific effect relying on single drug or combination regimen used. Since beneficial effects of in vitro combination regimen (RAF265 + ZSTK474 and SB590885 + ZSTK474), it is recommended additional investigation. These data suggest the potential use of combination regimen in in vivo experiment or afterwards in human PTC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Hundahl SA, Fleming ID, Fremgen AM, Menck HR (1998) A national cancer data base report on 53,856 cases of thyroid carcinoma treated in the U.S., 1985–1995 [see comments]. Cancer 83(12):2638–2648. doi:10.1002/(SICI)

    Article  CAS  PubMed  Google Scholar 

  2. Davies L, Welch HG (2006) Increasing incidence of thyroid cancer in the United States, 1973–2002. JAMA 295(18):2164–2167. doi:10.1001/jama

    Article  CAS  PubMed  Google Scholar 

  3. Jemal A, Thun MJ, Ries LA, Howe HL, Weir HK, Center MM, Ward E, Wu XC, Eheman C, Anderson R, Ajani UA, Kohler B, Edwards BK (2008) Annual report to the nation on the status of cancer, 1975–2005, featuring trends in lung cancer, tobacco use, and tobacco control. J Natl Cancer Inst 100(23):1672–1694. doi:10.1093/jnci/djn389

    Article  PubMed Central  PubMed  Google Scholar 

  4. Tuttle RM, Lukes Y, Onstad L, Lushnikov E, Abrosimov A, Troshin V, Tsyb A, Davis S, Kopecky KJ, Francis G (2008) ret/PTC activation is not associated with individual radiation dose estimates in a pilot study of neoplastic thyroid nodules arising in Russian children and adults exposed to Chernobyl fallout. Thyroid 18(8):839–846. doi:10.1089/thy.2008.0072

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  5. Kondo T, Ezzat S, Asa SL (2006) Patho genetic mechanisms in thyroid follicular-cell neoplasia. Nat Rev Cancer 6(4):292–306. doi:10.1038/nrc1836

    Article  CAS  PubMed  Google Scholar 

  6. Xing M (2008) Recent advances in molecular biology of thyroid cancer and their clinical implications. Otolaryngol Clin N Am 41(6):1135–1146. doi:10.1016/j.otc.2008.07.001

    Article  Google Scholar 

  7. Ciampi R, Nikiforov YE (2005) Alterations of the BRAF gene in thyroid tumors. Endocr Pathol 16(3):163–172

    Article  CAS  PubMed  Google Scholar 

  8. Barollo S, Pezzani R, Cristiani A, Redaelli M, Zambonin L, Rubin B, Bertazza L, Zane M, Mucignat-Caretta C, Bulfone A, Pennelli G, Casal Ide E, Pelizzo MR, Mantero F, Moro S, Mian C (2014) Prevalence, tumorigenic role, and biochemical implications of rare BRAF alterations. Thyroid. doi:10.1089/thy.2013.0403

    PubMed  Google Scholar 

  9. Satyamoorthy K, Li G, Gerrero MR, Brose MS, Volpe P, Weber BL, Van Belle P, Elder DE, Herlyn M (2003) Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Res 63(4):756–759

    CAS  PubMed  Google Scholar 

  10. Wan PT, Garnett MJ, Roe SM, Lee S, Niculescu-Duvaz D, Good VM, Jones CM, Marshall CJ, Springer CJ, Barford D, Marais R (2004) Mechanism of activation of the RAF-ERK signaling pathway by oncogenic mutations of B-RAF. Cell 116(6):855–867

    Article  CAS  PubMed  Google Scholar 

  11. Poulikakos PI, Solit DB (2011) Resistance to MEK inhibitors: should we co-target upstream? Sci Signal 4(166):16. doi:10.1126/scisignal.2001948

    Article  Google Scholar 

  12. King AJ, Patrick DR, Batorsky RS, Ho ML, Do HT, Zhang SY, Kumar R, Rusnak DW, Takle AK, Wilson DM, Hugger E, Wang L, Karreth F, Lougheed JC, Lee J, Chau D, Stout TJ, May EW, Rominger CM, Schaber MD, Luo L, Lakdawala AS, Adams JL, Contractor RG, Smalley KS, Herlyn M, Morrissey MM, Tuveson DA, Huang PS (2006) Demonstration of a genetic therapeutic index for tumors expressing oncogenic BRAF by the kinase inhibitor SB-590885. Cancer Res 66(23):11100–11105. doi:10.1158/0008-5472

    Article  CAS  PubMed  Google Scholar 

  13. Yaguchi S, Fukui Y, Koshimizu I, Yoshimi H, Matsuno T, Gouda H, Hirono S, Yamazaki K, Yamori T (2006) Antitumor activity of ZSTK474, a new phosphatidylinositol 3-kinase inhibitor. J Natl Cancer Inst 98(8):545–556. doi:10.1093/jnci/djj133

    Article  CAS  PubMed  Google Scholar 

  14. Pezzani R, Rubin B, Redaelli M, Radu C, Barollo S, Cicala MV, Salva M, Mian C, Mucignat-Caretta C, Simioni P, Iacobone M, Mantero F (2014) The antiproliferative effects of ouabain and everolimus on adrenocortical tumor cells. Endocr J 61(1):41–53

    Article  CAS  PubMed  Google Scholar 

  15. Mariniello B, Rosato A, Zuccolotto G, Rubin B, Cicala MV, Finco I, Iacobone M, Frigo AC, Fassina A, Pezzani R, Mantero F (2012) Combination of sorafenib and everolimus impacts therapeutically on adrenocortical tumor models. Endocr Relat Cancer 19(4):527–539. doi:10.1530/ERC-11-0337

    Article  CAS  PubMed  Google Scholar 

  16. Pilli T, Prasad KV, Jayarama S, Pacini F, Prabhakar BS (2009) Potential utility and limitations of thyroid cancer cell lines as models for studying thyroid cancer. Thyroid 19(12):1333–1342. doi:10.1089/thy.2009.0195

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Aksamitiene E, Kiyatkin A, Kholodenko BN (2012) Cross-talk between mitogenic Ras/MAPK and survival PI3K/Akt pathways: a fine balance. Biochem Soc Trans 40(1):139–146. doi:10.1042/BST20110609

    Article  CAS  PubMed  Google Scholar 

  18. Gonzalez-Polo RA, Boya P, Pauleau AL, Jalil A, Larochette N, Souquere S, Eskelinen EL, Pierron G, Saftig P, Kroemer G (2005) The apoptosis/autophagy paradox: autophagic vacuolization before apoptotic death. J Cell Sci 118(14):3091–3102. doi:10.1242/jcs.02447

    Article  CAS  PubMed  Google Scholar 

  19. Su Y, Vilgelm AE, Kelley MC, Hawkins OE, Liu Y, Boyd KL, Kantrow S, Splittgerber RC, Short SP, Sobolik T, Zaja-Milatovic S, Dahlman KB, Amiri KI, Jiang A, Lu P, Shyr Y, Stuart DD, Levy S, Sosman JA, Richmond A (2012) RAF265 inhibits the growth of advanced human melanoma tumors. Clin Cancer Res 18(8):2184–2198. doi:10.1158/1078-0432

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Saiselet M, Floor S, Tarabichi M, Dom G, Hebrant A, van Staveren WC, Maenhaut C (2012) Thyroid cancer cell lines: an overview. Front Endocrinol 3:133. doi:10.3389/fendo.2012.00133

    Article  CAS  Google Scholar 

  21. Vianello F, Mazzarotto R, Mian C, Lora O, Saladini G, Servodio O, Basso M, Pennelli G, Pelizzo MR, Sotti G (2012) Clinical outcome of low-risk differentiated thyroid cancer patients after radioiodine remnant ablation and recombinant human thyroid-stimulating hormone preparation. Clin Oncol 24(3):162–168. doi:10.1016/j.clon.2011.02.011

    Article  CAS  Google Scholar 

  22. Dan S, Okamura M, Mukai Y, Yoshimi H, Inoue Y, Hanyu A, Sakaue-Sawano A, Imamura T, Miyawaki A, Yamori T (2012) ZSTK474, a specific phosphatidylinositol 3-kinase inhibitor, induces G1 arrest of the cell cycle in vivo. Eur J Cancer 48(6):936–943. doi:10.1016/j.ejca.2011.10.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by Associazione Italiana per la Ricerca Oncologica di Base (AIROB, Padova, Italy). The authors thank Novartis for gift of RAF265.

Declaration of interests

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaele Pezzani.

Electronic supplementary materials

Below is the link to the electronic supplementary material.

Figure S1

(PDF 2822 kb)

Figure S2

(PDF 4466 kb)

Figure S3

(PDF 3450 kb)

Figure S4

(PDF 3715 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barollo, S., Bertazza, L., Baldini, E. et al. The combination of RAF265, SB590885, ZSTK474 on thyroid cancer cell lines deeply impact on proliferation and MAPK and PI3K/Akt signaling pathways. Invest New Drugs 32, 626–635 (2014). https://doi.org/10.1007/s10637-014-0108-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10637-014-0108-3

Keywords

Navigation