Skip to main content
Log in

Metabolic actions of insulin in ovarian granulosa cells were unaffected by hyperandrogenism

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Polycystic ovary syndrome (PCOS) patients have intra-ovarian hyperandrogenism and granulosa cells (GCs) from PCOS patients have impaired insulin-dependent glucose metabolism and insulin resistance. The purpose of this study is to determine whether excess androgen affects glucose metabolism and induces insulin resistance of GCs. We firstly explored the insulin metabolic signaling pathway and glucose metabolism in cultured GCs. The Akt phosphorylation and lactate production were increased after insulin treatment. Pre-treatment with PI3-K inhibitor attenuated insulin-induced phosphorylation of Akt and lactate accumulation. However, after treating GCs with different concentrations of testosterone for 5 days, insulin-induced phosphorylation of Akt and lactate production showed no significant change comparing with those of control cells. Finally, mRNA expression of insulin signaling mediators including INSR, IRS-1, IRS-2, and GLUT-4 in GCs was also not significantly altered after testosterone treatment. In conclusion, insulin activates PI3-K/Akt signaling pathway and promotes lactate production in ovarian GCs, but high androgen exerted no obvious influence on insulin signaling pathway and metabolic effect in GCs, suggesting that metabolic actions of insulin in ovarian GCs were unaffected by hyperandrogenism directly.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. M.O. Goodarzi, D.A. Dumesic, G. Chazenbalk, R. Azziz, Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat. Rev. Endocrinol. 7(4), 219–231 (2011)

    Article  CAS  PubMed  Google Scholar 

  2. R.S. Legro, S.A. Arslanian, D.A. Ehrmann, K.M. Hoeger, M.H. Murad, R. Pasquali, C.K. Welt, Diagnosis and treatment of polycystic ovary syndrome: an Endocrine Society clinical practice guideline. J. Clin. Endocrinol. Metab. 98(12), 4565–4592 (2013)

    Article  CAS  PubMed  Google Scholar 

  3. Z.J. Chen, H. Zhao, L. He, Y. Shi, Y. Qin, Z. Li, L. You, J. Zhao, J. Liu, X. Liang, X. Zhao, Y. Sun, B. Zhang, H. Jiang, D. Zhao, Y. Bian, X. Gao, L. Geng, Y. Li, D. Zhu, X. Sun, J.E. Xu, C. Hao, C.E. Ren, Y. Zhang, S. Chen, W. Zhang, A. Yang, J. Yan, J. Ma, Y. Zhao, Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3. Nat. Genet. 43(1), 55–59 (2011)

    Article  PubMed  Google Scholar 

  4. Y. Shi, H. Zhao, Y. Cao, D. Yang, Z. Li, B. Zhang, X. Liang, T. Li, J. Chen, J. Shen, J. Zhao, L. You, X. Gao, D. Zhu, X. Zhao, Y. Yan, Y. Qin, W. Li, J. Yan, Q. Wang, L. Geng, J. Ma, Y. Zhao, G. He, A. Zhang, S. Zou, A. Yang, J. Liu, B. Li, C. Wan, J. Shi, J. Yang, H. Jiang, J.E. Xu, X. Qi, Y. Sun, Y. Zhang, C. Hao, X. Ju, D. Zhao, C.E. Ren, X. Li, W. Zhang, J. Zhang, D. Wu, C. Zhang, L. He, Z.J. Chen, Genome-wide association study identifies eight new risk loci for polycystic ovary syndrome. Nat. Genet. 44(9), 1020–1025 (2012)

    Article  CAS  PubMed  Google Scholar 

  5. S. Jonard, D. Dewailly, The follicular excess in polycystic ovaries, due to intra-ovarian hyperandrogenism, may be the main culprit for the follicular arrest. Hum. Reprod. Update 10(2), 107–117 (2004)

    Article  PubMed  Google Scholar 

  6. K.A. Walters, C.M. Allan, D.J. Handelsman, Rodent models for human polycystic ovary syndrome. Biol. Reprod. 86(5), 149, 1–12 (2012)

    Article  PubMed  Google Scholar 

  7. C.M. DeUgarte, A.A. Bartolucci, R. Azziz, Prevalence of insulin resistance in the polycystic ovary syndrome using the homeostasis model assessment. Fertil. Steril. 83(5), 1454–1460 (2005)

    Article  CAS  PubMed  Google Scholar 

  8. R. Mathur, C.J. Alexander, J. Yano, B. Trivax, R. Azziz, Use of metformin in polycystic ovary syndrome. Am. J. Obstet. Gynecol. 199(6), 596–609 (2008)

    Article  CAS  PubMed  Google Scholar 

  9. E. Diamanti-Kandarakis, A. Dunaif, Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr. Rev. 33(6), 981–1030 (2012)

    Article  CAS  PubMed  Google Scholar 

  10. L. Poretsky, N.A. Cataldo, Z. Rosenwaks, L.C. Giudice, The insulin-related ovarian regulatory system in health and disease. Endocr. Rev. 20(4), 535–582 (1999)

    Article  CAS  PubMed  Google Scholar 

  11. Y. Lin, M. Fridstrom, T. Hillensjo, Insulin stimulation of lactate accumulation in isolated human granulosa-luteal cells: a comparison between normal and polycystic ovaries. Hum. Reprod. 12(11), 2469–2472 (1997)

    Article  CAS  PubMed  Google Scholar 

  12. P. Fedorcsak, R. Storeng, P.O. Dale, T. Tanbo, T. Abyholm, Impaired insulin action on granulosa-lutein cells in women with polycystic ovary syndrome and insulin resistance. Gynecol. Endocrinol. 14(5), 327–336 (2000)

    Article  CAS  PubMed  Google Scholar 

  13. X.K. Wu, S.Y. Zhou, J.X. Liu, P. Pollanen, K. Sallinen, M. Makinen, R. Erkkola, Selective ovary resistance to insulin signaling in women with polycystic ovary syndrome. Fertil. Steril. 80(4), 954–965 (2003)

    Article  PubMed  Google Scholar 

  14. S. Rice, N. Christoforidis, C. Gadd, D. Nikolaou, L. Seyani, A. Donaldson, R. Margara, K. Hardy, S. Franks, Impaired insulin-dependent glucose metabolism in granulosa-lutein cells from anovulatory women with polycystic ovaries. Hum. Reprod. 20(2), 373–381 (2005)

    Article  CAS  PubMed  Google Scholar 

  15. M.C. Richardson, S. Ingamells, C.D. Simonis, I.T. Cameron, R. Sreekumar, A. Vijendren, L. Sellahewa, S. Coakley, C.D. Byrne, Stimulation of lactate production in human granulosa cells by metformin and potential involvement of adenosine 5′ monophosphate-activated protein kinase. J. Clin. Endocrinol. Metab. 94(2), 670–677 (2009)

    Article  CAS  PubMed  Google Scholar 

  16. J.M. Pauli, N. Raja-Khan, X. Wu, R.S. Legro, Current perspectives of insulin resistance and polycystic ovary syndrome. Diabet. Med. 28(12), 1445–1454 (2011)

    Article  CAS  PubMed  Google Scholar 

  17. A. Dunaif, Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr. Rev. 18(6), 774–800 (1997)

    CAS  PubMed  Google Scholar 

  18. D.A. Dumesic, D.H. Abbott, V. Padmanabhan, Polycystic ovary syndrome and its developmental origins. Rev. Endocr. Metab. Disord. 8(2), 127–141 (2007)

    Article  PubMed  PubMed Central  Google Scholar 

  19. A. Corbould, Chronic testosterone treatment induces selective insulin resistance in subcutaneous adipocytes of women. J. Endocrinol. 192(3), 585–594 (2007)

    Article  CAS  PubMed  Google Scholar 

  20. M.C. Allemand, B.A. Irving, Y.W. Asmann, K.A. Klaus, L. Tatpati, C.C. Coddington, K.S. Nair, Effect of testosterone on insulin stimulated IRS1 Ser phosphorylation in primary rat myotubes—a potential model for PCOS-related insulin resistance. PLoS One 4(1), e4274 (2009)

    Article  PubMed  PubMed Central  Google Scholar 

  21. L. Zhang, Q. Liao, Effects of testosterone and metformin on glucose metabolism in endometrium. Fertil. Steril. 93(7), 2295–2298 (2010)

    Article  CAS  PubMed  Google Scholar 

  22. P. Ormazabal, C. Romero, A.F. Quest, M. Vega, Testosterone modulates the expression of molecules linked to insulin action and glucose uptake in endometrial cells. Horm. Metab. Res. 45(9), 640–645 (2013)

    Article  CAS  PubMed  Google Scholar 

  23. C.P. Zhang, J.L. Yang, J. Zhang, L. Li, L. Huang, S.Y. Ji, Z.Y. Hu, F. Gao, Y.X. Liu, Notch signaling is involved in ovarian follicle development by regulating granulosa cell proliferation. Endocrinology 152(6), 2437–2447 (2011)

    Article  CAS  PubMed  Google Scholar 

  24. K.J. Livak, T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(−Delta Delta C) method. Methods 25(4), 402–408 (2001)

    Article  CAS  PubMed  Google Scholar 

  25. E. Diamanti-Kandarakis, A.G. Papavassiliou, Molecular mechanisms of insulin resistance in polycystic ovary syndrome. Trends Mol. Med. 12(7), 324–332 (2006)

    Article  CAS  PubMed  Google Scholar 

  26. C.M. Taniguchi, B. Emanuelli, C.R. Kahn, Critical nodes in signalling pathways: insights into insulin action. Nat. Rev. Mol. Cell Biol. 7(2), 85–96 (2006)

    Article  CAS  PubMed  Google Scholar 

  27. J.W. Kornfeld, C. Baitzel, A.C. Konner, H.T. Nicholls, M.C. Vogt, K. Herrmanns, L. Scheja, C. Haumaitre, A.M. Wolf, U. Knippschild, J. Seibler, S. Cereghini, J. Heeren, M. Stoffel, J.C. Bruning, Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 494(7435), 111–115 (2013)

    Article  CAS  PubMed  Google Scholar 

  28. S. Rice, L.J. Pellatt, S.J. Bryan, S.A. Whitehead, H.D. Mason, Action of metformin on the insulin-signaling pathway and on glucose transport in human granulosa cells. J. Clin. Endocrinol. Metab. 96(3), E427–E435 (2011)

    Article  CAS  PubMed  Google Scholar 

  29. K. Hojlund, D. Glintborg, N.R. Andersen, J.B. Birk, J.T. Treebak, C. Frosig, H. Beck-Nielsen, J.F. Wojtaszewski, Impaired insulin-stimulated phosphorylation of Akt and AS160 in skeletal muscle of women with polycystic ovary syndrome is reversed by pioglitazone treatment. Diabetes 57(2), 357–366 (2008)

    Article  PubMed  Google Scholar 

  30. P. Cetica, L. Pintos, G. Dalvit, M. Beconi, Activity of key enzymes involved in glucose and triglyceride catabolism during bovine oocyte maturation in vitro. Reproduction 124(5), 675–681 (2002)

    Article  CAS  PubMed  Google Scholar 

  31. K. Vendola, J. Zhou, J. Wang, C.A. Bondy, Androgens promote insulin-like growth factor-I and insulin-like growth factor-I receptor gene expression in the primate ovary. Hum. Reprod. 14(9), 2328–2332 (1999)

    Article  CAS  PubMed  Google Scholar 

  32. A. Virkamaki, K. Ueki, C.R. Kahn, Protein–protein interaction in insulin signaling and the molecular mechanisms of insulin resistance. J. Clin. Invest. 103(7), 931–943 (1999)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. D.J. Burks, J. Font de Mora, M. Schubert, D.J. Withers, M.G. Myers, H.H. Towery, S.L. Altamuro, C.L. Flint, M.F. White, IRS-2 pathways integrate female reproduction and energy homeostasis. Nature 407(6802), 377–382 (2000)

    Article  CAS  PubMed  Google Scholar 

  34. I. Neganova, H. Al-Qassab, H. Heffron, C. Selman, A.I. Choudhury, S.J. Lingard, I. Diakonov, M. Patterson, M. Ghatei, S.R. Bloom, S. Franks, I. Huhtaniemi, K. Hardy, D.J. Withers, Role of central nervous system and ovarian insulin receptor substrate 2 signaling in female reproductive function in the mouse. Biol. Reprod. 76(6), 1045–1053 (2007)

    Article  CAS  PubMed  Google Scholar 

  35. R.L. Robker, L.K. Akison, B.D. Bennett, P.N. Thrupp, L.R. Chura, D.L. Russell, M. Lane, R.J. Norman, Obese women exhibit differences in ovarian metabolites, hormones, and gene expression compared with moderate-weight women. J. Clin. Endocrinol. Metab. 94(5), 1533–1540 (2009)

    Article  CAS  PubMed  Google Scholar 

  36. Y.H. Chen, S. Heneidi, J.M. Lee, L.C. Layman, D.W. Stepp, G.M. Gamboa, B.S. Chen, G. Chazenbalk, R. Azziz, miRNA-93 inhibits GLUT4 and is overexpressed in adipose tissue of polycystic ovary syndrome patients and women with insulin resistance. Diabetes 62(7), 2278–2286 (2013)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. R. Mioni, S. Chiarelli, N. Xamin, L. Zuliani, M. Granzotto, B. Mozzanega, P. Maffei, C. Martini, S. Blandamura, N. Sicolo, R. Vettor, Evidence for the presence of glucose transporter 4 in the endometrium and its regulation in polycystic ovary syndrome patients. J. Clin. Endocrinol. Metab. 89(8), 4089–4096 (2004)

    Article  CAS  PubMed  Google Scholar 

  38. F. Qu, F.F. Wang, X.E. Lu, M.Y. Dong, J.Z. Sheng, P.P. Lv, G.L. Ding, B.W. Shi, D. Zhang, H.F. Huang, Altered aquaporin expression in women with polycystic ovary syndrome: hyperandrogenism in follicular fluid inhibits aquaporin-9 in granulosa cells through the phosphatidylinositol 3-kinase pathway. Hum. Reprod. 25(6), 1441–1450 (2010)

    Article  CAS  PubMed  Google Scholar 

  39. F. Qu, F.F. Wang, R. Yin, G.L. Ding, M. El-Prince, Q. Gao, B.W. Shi, H.H. Pan, Y.T. Huang, M. Jin, P.C. Leung, J.Z. Sheng, H.F. Huang, A molecular mechanism underlying ovarian dysfunction of polycystic ovary syndrome: hyperandrogenism induces epigenetic alterations in the granulosa cells. J. Mol. Med. (Berl) 90(8), 911–923 (2012)

    Article  CAS  Google Scholar 

  40. A. Sen, H. Prizant, A. Light, A. Biswas, E. Hayes, H.J. Lee, D. Barad, N. Gleicher, S.R. Hammes, Androgens regulate ovarian follicular development by increasing follicle stimulating hormone receptor and microRNA-125b expression. Proc. Natl. Acad. Sci. USA 111(8), 3008–3013 (2014)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Basic Research Program of China (973 program, 2012CB944700); National Natural Science Foundation of China (81200419); Shandong Province Excellent Young and Middle-Aged Scientists Research Awards Fund (BS2013YY012); Key Program for Basic Research of the Science and Technology Commission of Shanghai Municipality, China (12JC1405800); China Postdoctoral Science Foundation Funded Project (2012M511522, 2013T60677); and Postdoctoral Innovation Foundation of Shandong Province (201203043). The authors thank all of their colleagues for technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zi-Jiang Chen.

Ethics declarations

Conflict of interest

All of the authors have no conflict of interest to declare.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 385 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Xu, H., Cui, Y. et al. Metabolic actions of insulin in ovarian granulosa cells were unaffected by hyperandrogenism. Endocrine 53, 823–830 (2016). https://doi.org/10.1007/s12020-016-0949-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-016-0949-y

Keywords

Navigation