Skip to main content
Log in

Androgen-induced upregulation of CFTR in pancreatic β-cell contributes to hyperinsulinemia in PCOS model

  • Original Article
  • Published:
Endocrine Aims and scope Submit manuscript

Abstract

Purpose

Polycystic ovarian syndrome (PCOS) is an endocrine-metabolic condition affecting 5–10% of reproductive-aged women and characterized by hyperandrogenism, insulin resistance (IR), and hyperinsulinemia. CFTR is known to be regulated by steroid hormones, and our previous study has demonstrated an essential role of CFTR in β-cell function. This study aims to investigate the contribution of androgen and CFTR to hypersecretion of insulin in PCOS and the underlying mechanism.

Methods

We established a rat PCOS model by subcutaneously implanting silicon tubing containing Dihydrotestosterone (DHT). Glucose tolerance test with insulin levels was performed at 9 weeks after implantation. A rat β-cell line RINm5F, a mouse β-cell line β-TC-6, and mouse islets were treated with DHT, and with or without the androgen antagonist flutamide for CFTR and insulin secretion-related functional assays or mRNA/protein expression measurement. The effect of CFTR inhibitors on DHT-promoted membrane depolarization, glucose-stimulated intracellular Ca2+ oscillation and insulin secretion were examined by membrane potential imaging, calcium imaging and ELISA, respectively.

Results

The DHT-induced PCOS model showed increased body weight, impaired glucose tolerance, and higher blood glucose and insulin levels after glucose stimulation. CFTR was upregulated in islets of PCOS model and DHT-treated cells, which was reversed by flutamide. The androgen receptor (AR) could bind to the CFTR promoter region, which was enhanced by DHT. Furthermore, DHT-induced membrane depolarization, enhanced glucose-stimulated Ca2+ oscillations and insulin secretion, which could be abolished by CFTR inhibitors.

Conclusions

Excessive androgen enhances glucose-stimulating insulin secretion through upregulation of CFTR, which may contribute to hyperinsulinemia in PCOS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. M.O. Goodarzi, et al. Polycystic ovary syndrome: etiology, pathogenesis and diagnosis. Nat. Rev. Endocrinol. 7(4), 219–231 (2011).

    Article  CAS  PubMed  Google Scholar 

  2. R.S. Legro et al. Diagnosis and treatment of polycystic ovary syndrome: an endocrine society clinical practice guideline. J. Clin. Endocrinol. Metab. 98(12), 4565–4592 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. R.A. Wild, Long-term health consequences of PCOS. Hum. Reprod. Update 8(3), 231–241 (2002).

    Article  PubMed  Google Scholar 

  4. C.M. DeUgarte, A.A. Bartolucci, R. Azziz, Prevalence of insulin resistance in the polycystic ovary syndrome using the homeostasis model assessment. Fertil. Steril. 83(5), 1454–1460 (2005).

    Article  CAS  PubMed  Google Scholar 

  5. S. Hahn et al. Clinical and biochemical characterization of women with polycystic ovary syndrome in North Rhine-Westphalia. Horm. Metab. Res. 37(7), 438–444 (2005).

    Article  CAS  PubMed  Google Scholar 

  6. E. Carmina, R.A. Lobo, Use of fasting blood to assess the prevalence of insulin resistance in women with polycystic ovary syndrome. Fertil. Steril. 82(3), 661–665 (2004).

    Article  PubMed  Google Scholar 

  7. A. Dunaif, Insulin resistance and the polycystic ovary syndrome: mechanism and implications for pathogenesis. Endocr. Rev. 18(6), 774–800 (1997).

    CAS  PubMed  Google Scholar 

  8. E. Diamanti-Kandarakis, A. Dunaif, Insulin resistance and the polycystic ovary syndrome revisited: an update on mechanisms and implications. Endocr. Rev. 33(6), 981–1030 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. J. Rojas et al. Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth. Int J. Reprod. Med. 2014, 719050 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  10. A. Corbould, Chronic testosterone treatment induces selective insulin resistance in subcutaneous adipocytes of women. J. Endocrinol. 192(3), 585–594 (2007).

    Article  CAS  PubMed  Google Scholar 

  11. M.C. Allemand et al. Effect of testosterone on insulin stimulated IRS1 Ser phosphorylation in primary rat myotubes–a potential model for PCOS-related insulin resistance. PLoS One. 4(1), e4274 (2009).

    Article  PubMed  PubMed Central  Google Scholar 

  12. S. Andrisse et al. Androgen-induced insulin resistance is ameliorated by deletion of hepatic androgen receptor in females. FASEB J. 35(10), e21921 (2021).

    Article  CAS  PubMed  Google Scholar 

  13. M. Hu et al. Hyperandrogenism and insulin resistance induce gravid uterine defects in association with mitochondrial dysfunction and aberrant reactive oxygen species production. Am. J. Physiol. Endocrinol. Metab. 316(5), E794–e809 (2019).

    Article  CAS  PubMed  Google Scholar 

  14. M.K. Cavaghan, D.A. Ehrmann, K.S. Polonsky, Interactions between insulin resistance and insulin secretion in the development of glucose intolerance. J. Clin. Invest. 106(3), 329–333 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. A. Pick et al. Role of apoptosis in failure of beta-cell mass compensation for insulin resistance and beta-cell defects in the male Zucker diabetic fatty rat. Diabetes 47(3), 358–364 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. T.C. Becker et al. Differential effects of overexpressed glucokinase and hexokinase I in isolated islets. Evidence for functional segregation of the high and low Km enzymes. J. Biol. Chem. 271(1), 390–394 (1996).

    Article  CAS  PubMed  Google Scholar 

  17. B.N. Cockburn et al. Changes in pancreatic islet glucokinase and hexokinase activities with increasing age, obesity, and the onset of diabetes. Diabetes. 46(9), 1434–1439 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. J.S. Mishra, A.S. More, S. Kumar, Elevated androgen levels induce hyperinsulinemia through increase in Ins1 transcription in pancreatic beta cells in female rats. Biol. Reprod. 98(4), 520–531 (2018).

    Article  PubMed  PubMed Central  Google Scholar 

  19. G. Navarro et al. Extranuclear actions of the androgen receptor enhance glucose-stimulated insulin secretion in the male. Cell Metab. 23(5), 837–851 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. G.A. Burghen, J.R. Givens, A.E. Kitabchi, Correlation of hyperandrogenism with hyperinsulinism in polycystic ovarian disease. J. Clin. Endocrinol. Metab. 50(1), 113–116 (1980).

    Article  CAS  PubMed  Google Scholar 

  21. F. Tosi, et al. Serum androgens are independent predictors of insulin clearance but not of insulin secretion in women with PCOS. J. Clin. Endocrinol. Metab. 105(5), dgaa095 (2020).

    Article  PubMed  Google Scholar 

  22. C. Ammala et al. Inositol trisphosphate-dependent periodic activation of a Ca(2+)-activated K+ conductance in glucose-stimulated pancreatic beta-cells. Nature 353(6347), 849–852 (1991).

    Article  CAS  PubMed  Google Scholar 

  23. T. Aizawa et al. ATP-sensitive K+ channel-independent glucose action in rat pancreatic beta-cell. Am. J. Physiol. 266(3 Pt 1), C622–C627 (1994).

    Article  CAS  PubMed  Google Scholar 

  24. S.N. Yang, P.O. Berggren, Beta-cell CaV channel regulation in physiology and pathophysiology. Am. J. Physiol. Endocrinol. Metab. 288(1), E16–E28 (2005).

    Article  CAS  PubMed  Google Scholar 

  25. J.H. Guo et al. Glucose-induced electrical activities and insulin secretion in pancreatic islet beta-cells are modulated by CFTR. Nat. Commun. 5, 4420 (2014).

    Article  CAS  PubMed  Google Scholar 

  26. X.L. Zhang, et al. Angiotensin(1-7) activates MAS-1 and upregulates CFTR to promote insulin secretion in pancreatic beta-cells: the association with type 2 diabetes. Endocr. Connect 11(1), e210357 (2022).

    Article  CAS  PubMed  Google Scholar 

  27. L.N. Chan et al. Distribution and regulation of ENaC subunit and CFTR mRNA expression in murine female reproductive tract. J. Membr. Biol. 185(2), 165–176 (2002).

    Article  CAS  PubMed  Google Scholar 

  28. L.C. Ajonuma et al. Estrogen-induced abnormally high cystic fibrosis transmembrane conductance regulator expression results in ovarian hyperstimulation syndrome. Mol. Endocrinol. 19(12), 3038–3044 (2005).

    Article  CAS  PubMed  Google Scholar 

  29. A. Mularoni et al. Down-regulation by progesterone of CFTR expression in endometrial epithelial cells: a study by competitive RT-PCR. Biochem. Biophys. Res. Commun. 217(3), 1105–1111 (1995).

    Article  CAS  PubMed  Google Scholar 

  30. C. Xie et al. CFTR suppresses tumor progression through miR-193b targeting urokinase plasminogen activator (uPA) in prostate cancer. Oncogene 32(18), 2282–91, 2291.e1–7 (2013).

    Article  PubMed  Google Scholar 

  31. N.B. Sweezey, F. Ghibu, S. Gagnon, Sex hormones regulate CFTR in developing fetal rat lung epithelial cells. Am. J. Physiol. 272(5 Pt 1), L844–L851 (1997).

    CAS  PubMed  Google Scholar 

  32. H. Chen et al. Impaired CFTR-dependent amplification of FSH-stimulated estrogen production in cystic fibrosis and PCOS. J. Clin. Endocrinol. Metab. 97(3), 923–932 (2012).

    Article  CAS  PubMed  Google Scholar 

  33. H. Chen et al. Defective CFTR-regulated granulosa cell proliferation in polycystic ovarian syndrome. Reproduction 149(5), 393–401 (2015).

    Article  CAS  PubMed  Google Scholar 

  34. D.S. Li et al. A protocol for islet isolation from mouse pancreas. Nat. Protoc. 4(11), 1649–1652 (2009).

    Article  CAS  PubMed  Google Scholar 

  35. W.Q. Huang et al. Abnormal CFTR affects glucagon production by islet alpha cells in cystic fibrosis and polycystic ovarian syndrome. Front. Physiol. 8, 835 (2017).

    Article  PubMed  PubMed Central  Google Scholar 

  36. C. Yuan et al. Involvement of kisspeptin in androgen-induced hypothalamic endoplasmic reticulum stress and its rescuing effect in PCOS rats. Biochim. Biophys. Acta Mol. Basis Dis. 1867(12), 166242 (2021).

    Article  CAS  PubMed  Google Scholar 

  37. W.Q. Huang et al. Glucose-sensitive CFTR suppresses glucagon secretion by potentiating KATP channels in pancreatic islet alpha cells. Endocrinology 158(10), 3188–3199 (2017).

    Article  CAS  PubMed  Google Scholar 

  38. N.K. Stepto et al. Women with polycystic ovary syndrome have intrinsic insulin resistance on euglycaemic-hyperinsulaemic clamp. Hum. Reprod. 28(3), 777–784 (2013).

    Article  CAS  PubMed  Google Scholar 

  39. A. Dunaif et al. Profound peripheral insulin resistance, independent of obesity, in polycystic ovary syndrome. Diabetes 38(9), 1165–1174 (1989).

    Article  CAS  PubMed  Google Scholar 

  40. G. Zhang, J.C. Garmey, J.D. Veldhuis, Interactive stimulation by luteinizing hormone and insulin of the steroidogenic acute regulatory (StAR) protein and 17alpha-hydroxylase/17,20-lyase (CYP17) genes in porcine theca cells. Endocrinology 141(8), 2735–2742 (2000).

    Article  CAS  PubMed  Google Scholar 

  41. V.L. Nelson-Degrave et al. Alterations in mitogen-activated protein kinase kinase and extracellular regulated kinase signaling in theca cells contribute to excessive androgen production in polycystic ovary syndrome. Mol. Endocrinol. 19(2), 379–390 (2005).

    Article  CAS  PubMed  Google Scholar 

  42. I.R. Wallace et al. Sex hormone binding globulin and insulin resistance. Clin. Endocrinol. (Oxf). 78(3), 321–329 (2013).

    Article  CAS  PubMed  Google Scholar 

  43. F. Cirillo, et al. CFTR and FOXO1 gene expression are reduced and high mobility group box 1 (HMGB1) is increased in the ovaries and serum of women with polycystic ovarian syndrome. Gynecol. Endocrinol 35(10), 842–846 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. N.S. Khadijah Ramli, N. Giribabu, N. Salleh, Testosterone enhances expression and functional activity of epithelial sodium channel (ENaC), cystic fibrosis transmembrane regulator (CFTR) and sodium hydrogen exchanger (NHE) in vas deferens of sex-steroid deficient male rats. Steroids 138, 117–133 (2018).

    Article  CAS  PubMed  Google Scholar 

  45. N.S. Ramli et al. Testosterone regulates levels of cystic fibrosis transmembrane regulator, adenylate cyclase, and cAMP in the seminal vesicles of orchidectomized rats. Theriogenology 85(2), 238–246 (2016).

    Article  CAS  PubMed  Google Scholar 

  46. J. Adams et al. Enhanced inflammatory transcriptome in the granulosa cells of women with polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 101(9), 3459–3468 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. A. Xu et al. GIMAP7 induces oxidative stress and apoptosis of ovarian granulosa cells in polycystic ovary syndrome by inhibiting sonic hedgehog signalling pathway. J. Ovarian Res. 15(1), 141 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. J.M.K. Azhary et al. Endoplasmic reticulum stress activated by androgen enhances apoptosis of granulosa cells via induction of death receptor 5 in PCOS. Endocrinology 160(1), 119–132 (2019).

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by National Natural Science Foundation of China (81901441) and The Fundamental Research Funds for the Central Universities (No. 21619331) in Jinan University.

Author information

Authors and Affiliations

Authors

Contributions

J.G.: Conceptualization; Formal analysis; Methodology; Validation; Supervision; Writing—review & editing. W.H.: Investigation; Methodology; Formal analysis; Resources; Visualization; Supervision; Writing—review & editing. H.C.: Data curation; Writing—Original draft preparation; Visualization; Supervision; Writing—review & editing. Y.R.: Formal analysis; Visualization. M.S.: Formal analysis; Investigation; Methodology; Validation. Y.W.: Formal analysis; Validation; Writing—Original draft preparation. J.L.: Methodology; Investigation; Validation. X.Z.: Formal analysis; Writing—Original draft preparation. C.Y. has established the PCOS rat model and designed the glucose tolerance assay in this paper.

Corresponding authors

Correspondence to Jinghui Guo, Wen Qing Huang or Hui Chen.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Ethics approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This research was authorized by the ethics committee of Chinese University of Hong Kong.

Informed consent

Written informed consent was obtained from all participants.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, M., Wu, Y., Yuan, C. et al. Androgen-induced upregulation of CFTR in pancreatic β-cell contributes to hyperinsulinemia in PCOS model. Endocrine 83, 242–250 (2024). https://doi.org/10.1007/s12020-023-03516-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12020-023-03516-2

Keywords

Navigation